Thorlabs Motion Controllers Host-Controller Communications Protocol

Date:

14 May 2025

Contents

Messages Applicable to BPC20x Series

MGMSG MOD IDENTIFY	0x0223	46
MGMSG MOD SET CHANENABLESTATE	0x0225 0x0210	47
MGMSG MOD REQ CHANENABLESTATE	0x0211	47
MGMSG MOD GET CHANENABLESTATE	0x0212	47
MGMSG MOD SET DIGOUTPUTS	0x0213	58
MGMSG MOD REQ DIGOUTPUTS	0x0214	58
MGMSG MOD GET DIGOUTPUTS	0x0215	58
MGMSG HW DISCONNECT	0x0002	49
MGMSG HW RESPONSE	0x0080	49
MGMSG HW RICHRESPONSE	0x0081	50
MGMSG_HW_START_UPDATEMSGS	0x0011	51
MGMSG HW STOP UPDATEMSGS	0x0012	51
MGMSG_HW_REQ_INFO	0x0005	52
MGMSG HW GET INFO	0x0006	52
MGMSG RACK REQ BAYUSED	0x0060	54
MGMSG RACK GET BAYUSED	0x0061	54
MGMSG RACK REQ STATUSBITS	0x0226	56
MGMSG_RACK_GET_STATUSBITS	0x0227	56
MGMSG RACK SET DIGOUTPUTS	0x0228	57
MGMSG_RACK_REQ_DIGOUTPUTS	0x0229	57
MGMSG RACK GET DIGOUTPUTS	0x0230	57
MGMSG PZ SET POSCONTROLMODE	0x0640	195
MGMSG PZ REQ POSCONTROLMODE	0x0641	195
MGMSG PZ GET POSCONTROLMODE	0x0642	195
MGMSG_PZ_SET_OUTPUTVOLTS	0x0643	198
MGMSG PZ REQ OUTPUTVOLTS	0x0644	198
MGMSG_PZ_GET_OUTPUTVOLTS	0x0645	198
MGMSG PZ SET OUTPUTPOS	0x0646	199
MGMSG PZ REQ OUTPUTPOS	0x0647	199
MGMSG PZ GET OUTPUTPOS	0x0648	199
MGMSG PZ SET INPUTVOLTSSRC	0x0652	200
MGMSG_PZ_REQ_INPUTVOLTSSRC	0x0653	200
MGMSG PZ GET INPUTVOLTSSRC	0x0654	200
MGMSG_PZ_SET_PICONSTS	0x0655	202
MGMSG PZ REQ PICONSTS	0x0656	202
MGMSG PZ GET PICONSTS	0x0657	202
MGMSG_PZ_REQ_PZSTATUSBITS	0x065B	203
MGMSG PZ GET PZSTATUSBITS	0x065C	203
MGMSG_PZ_GET_PZSTATUSUPDATE	<u>0x0661</u>	205
MGMSG PZ SET OUTPUTLUT	0x0700	215
MGMSG_PZ_REQ_OUTPUTLUT	<u>0x0701</u>	215
MGMSG PZ GET OUTPUTLUT	0x0702	215
MGMSG PZ SET OUTPUTLUTPARAMS	0x0703	217
MGMSG_PZ_REQ_OUTPUTLUTPARAMS	<u>0x0704</u>	217
MGMSG PZ GET OUTPUTLUTPARAMS	0x0705	217
MGMSG_PZ_START_LUTOUTPUT	<u>0x0706</u>	221
MGMSG PZ STOP LUTOUTPUT	<u>0x0707</u>	221
MGMSG_PZ_SET_ZERO	0x0658	226
MGMSG PZ REQ MAXTRAVEL	0x0650	227
MGMSG PZ GET MAXTRAVEL	<u>0x0651</u>	227

MGMSG PZ SET OUTPUTMAXVOLTS	0x0680	230
MGMSG PZ REQ OUTPUTMAXVOLTS	0x0681	230
MGMSG_PZ_GET_OUTPUTMAXVOLTS	0x0682	230

Messages Applicable to BPC30x Series

MGMSG MOD IDENTIFY	0x0223	46
MGMSG MOD SET CHANENABLESTATE	0x0210	47
MGMSG MOD REQ CHANENABLESTATE	0x0211	47
MGMSG MOD GET CHANENABLESTATE	0x0212	47
MGMSG MOD SET DIGOUTPUTS	0x0213	588
MGMSG MOD REQ DIGOUTPUTS	0x0214	588
MGMSG MOD GET DIGOUTPUTS	0x0215	588
MGMSG HW DISCONNECT	0x0002	49
MGMSG HW RESPONSE	0x0080	49
MGMSG HW RICHRESPONSE	0x0081	50
MGMSG HW START UPDATEMSGS	0x0011	51
MGMSG HW STOP UPDATEMSGS	0x0012	51
MGMSG HW REQ INFO	0x0005	52
MGMSG HW GET INFO	0x0006	52
MGMSG RACK REQ BAYUSED	0x0060	54
MGMSG RACK GET BAYUSED	0x0061	54
MGMSG RACK REQ STATUSBITS	0x0226	56
MGMSG RACK GET STATUSBITS	0x0227	56
MGMSG RACK SET DIGOUTPUTS	0x0228	57
MGMSG RACK REQ DIGOUTPUTS	0x0229	57
MGMSG RACK GET DIGOUTPUTS	0x0230	57
MGMSG PZ SET POSCONTROLMODE	0x0640	195
MGMSG PZ REQ POSCONTROLMODE	<u>0x0641</u>	195
MGMSG PZ GET POSCONTROLMODE	0x0642	195
MGMSG PZ SET OUTPUTVOLTS	0x0643	198
MGMSG PZ REQ OUTPUTVOLTS	0x0644	198
MGMSG_PZ_GET_OUTPUTVOLTS	<u>0x0645</u>	198
MGMSG PZ SET OUTPUTPOS	0x0646	199
MGMSG_PZ_REQ_OUTPUTPOS	<u>0x0647</u>	199
MGMSG PZ GET OUTPUTPOS	0x0648	199
MGMSG PZ SET INPUTVOLTSSRC	0x0652	200
MGMSG_PZ_REQ_INPUTVOLTSSRC	0x0653	200
MGMSG PZ GET INPUTVOLTSSRC	0x0654	200
MGMSG_PZ_SET_PICONSTS	0x0655	202
MGMSG PZ REQ PICONSTS	0x0656	202
MGMSG_PZ_GET_PICONSTS	0x0657	202
MGMSG PZ REQ PZSTATUSBITS	0x065B	203
MGMSG PZ GET PZSTATUSBITS	0x065C	203
MGMSG_PZ_GET_PZSTATUSUPDATE	<u>0x0661</u>	205
MGMSG PZ ACK PZSTATUSUPDATE	0x0662	207
MGMSG_PZ_SET_OUTPUTLUT	0x0700	215
MGMSG PZ REQ OUTPUTLUT	<u>0x0701</u>	215
MGMSG PZ GET OUTPUTLUT	0x0702	215
MGMSG PZ SET OUTPUTLUTPARAMS	0x0703	217
MGMSG PZ REQ OUTPUTLUTPARAMS	0x0704	217
MGMSG_PZ_GET_OUTPUTLUTPARAMS	<u>0x0705</u>	217
MGMSG PZ START LUTOUTPUT	<u>0x0706</u>	221
MGMSG_PZ_STOP_LUTOUTPUT	0x0707	221
MGMSG PZ SET ZERO	0x0658	226
MGMSG PZ SET OUTPUTMAXVOLTS	0x0680	230

MGMSG_PZ_REQ_OUTPUTMAXVOLTS (<u>0x0681</u>	230
MGMSG PZ GET OUTPUTMAXVOLTS	0x0682	230
MGMSG_PZ_SET_SLEWRATES (0x0683	232
MGMSG PZ REQ SLEWRATES	0x0684	232
MGMSG PZ GET SLEWRATES	0x0685	232
MGMSG RESTOREFACTORYSETTINGS	0x0686	60

Messages Applicable to PPC001 and PPC102

MGMSG MOD IDENTIFY	0x0223	46
MGMSG MOD SET CHANENABLESTATE	0x0210	47
MGMSG MOD REQ CHANENABLESTATE	0x0211	47
MGMSG MOD GET CHANENABLESTATE	0x0212	47
MGMSG MOD SET DIGOUTPUTS	0x0213	588
MGMSG MOD REQ DIGOUTPUTS	0x0214	588
MGMSG MOD GET DIGOUTPUTS	0x0215	588
MGMSG HW DISCONNECT	0x0002	49
MGMSG HW RESPONSE	0x0080	49
MGMSG HW RICHRESPONSE	0x0081	50
MGMSG HW START UPDATEMSGS	0x0011	51
MGMSG HW STOP UPDATEMSGS	0x0012	51
MGMSG HW REQ INFO	0x0005	52
MGMSG HW GET INFO	0x0006	52
MGMSG RACK REQ BAYUSED	0x0060	54
MGMSG RACK GET BAYUSED	0x0061	54
MGMSG PZ SET POSCONTROLMODE	0x0640	195
MGMSG PZ REQ POSCONTROLMODE	0x0641	195
MGMSG PZ GET POSCONTROLMODE	0x0642	195
MGMSG PZ SET OUTPUTVOLTS	0x0643	198
MGMSG PZ REQ OUTPUTVOLTS	0x0644	198
MGMSG PZ GET OUTPUTVOLTS	0x0645	198
MGMSG PZ SET OUTPUTPOS	0x0646	199
MGMSG PZ REQ OUTPUTPOS	0x0647	199
MGMSG PZ GET OUTPUTPOS	0x0648	199
MGMSG PZ REQ MAXTRAVEL	0x0650	227
MGMSG PZ GET MAXTRAVEL	0x0651	227
MGMSG PZ REQ PZSTATUSBITS	0x065B	203
MGMSG PZ GET PZSTATUSBITS	0x065C	203
MGMSG PZ REQ PZSTATUSUPDATE	0x0660	205
MGMSG PZ GET PZSTATUSUPDATE	0x0661	205
MGMSG PZ ACK PZSTATUSUPDATE	0x0662	207
MGMSG_PZ_SET_OUTPUTMAXVOLTS	<u>0x0680</u>	230
MGMSG PZ REQ OUTPUTMAXVOLTS	<u>0x0681</u>	230
MGMSG PZ GET OUTPUTMAXVOLTS	0x0682	230
MGMSG_PZ_SET_PPC_PIDCONSTS	0x0690	208
MGMSG PZ REQ PPC PIDCONSTS	0x0691	208
MGMSG_PZ_GET_PPC_PIDCONSTS	0x0692	208
MGMSG PZ SET PPC NOTCHPARAMS	0x0693	210
MGMSG_PZ_REQ_PPC_NOTCHPARAMS	<u>0x0694</u>	210
MGMSG PZ GET PPC NOTCHPARAMS	0x0695	210
MGMSG PZ SET PPC IOSETTINGS	0x0696	212
MGMSG PZ REQ PPC IOSETTINGS	0x0697	212
MGMSG PZ GET PPC IOSETTINGS	0x0698	212
MGMSG PZ SET EEPROMPARAMS:	0x07D0	222

Messages Applicable to TPZ001 and KPZ101

	0 0000	4.0
MGMSG_MOD_IDENTIFY	<u>0x0223</u>	46
MGMSG MOD SET CHANENABLESTATE	<u>0x0210</u>	47
MGMSG MOD REQ CHANENABLESTATE	<u>0x0211</u>	47
MGMSG MOD GET CHANENABLESTATE	0x0212	47
MGMSG HW DISCONNECT	0x0002	49
MGMSG_HW_RESPONSE	<u>0x0080</u>	49
MGMSG HW RICHRESPONSE	0x0081	50
MGMSG_HW_START_UPDATEMSGS	<u>0x0011</u>	51
MGMSG HW STOP UPDATEMSGS	0x0012	51
MGMSG HW REQ INFO	0x0005	52
MGMSG_HW_GET_INFO	<u>0x0006</u>	52
MGMSG PZ SET POSCONTROLMODE	0x0640	195
MGMSG_PZ_REQ_POSCONTROLMODE	<u>0x0641</u>	195
MGMSG PZ GET POSCONTROLMODE	0x0642	195
MGMSG_PZ_SET_OUTPUTVOLTS	0x0643	198
MGMSG PZ REQ OUTPUTVOLTS	0x0644	198
MGMSG PZ GET OUTPUTVOLTS	0x0645	198
MGMSG_PZ_SET_OUTPUTPOS	<u>0x0646</u>	199
MGMSG PZ REQ OUTPUTPOS	0x0647	199
MGMSG PZ GET OUTPUTPOS	<u>0x0648</u>	199
MGMSG PZ SET INPUTVOLTSSRC	0x0652	200
MGMSG PZ REQ INPUTVOLTSSRC	0x0653	200
MGMSG PZ GET INPUTVOLTSSRC	0x0654	200
MGMSG PZ SET PICONSTS	0x0655	202
MGMSG PZ REQ PICONSTS	0x0656	202
MGMSG PZ GET PICONSTS	0x0657	202
MGMSG PZ GET PZSTATUSUPDATE	0x0661	205
MGMSG PZ SET OUTPUTLUT	0x0700	215
MGMSG PZ SET OUTPUTLUTPARAMS	0x0703	217
MGMSG PZ REQ OUTPUTLUTPARAMS	0x0704	217
MGMSG PZ GET OUTPUTLUTPARAMS	0x0705	217
MGMSG PZ START LUTOUTPUT	0x0706	221
MGMSG PZ STOP LUTOUTPUT	0x0707	221
MGMSG PZ SET EEPROMPARAMS:	0x07D0	222
MGMSG PZ SET TPZ DISPSETTINGS:	0x07D1	223
MGMSG PZ REQ TPZ DISPSETTINGS:	0x07D2	223
MGMSG PZ GET TPZ DISPSETTINGS;	0x07D3	223
MGMSG PZ SET TPZ IOSETTINGS:	0x07D4	224
MGMSG PZ REQ TPZ IOSETTINGS:	0x07D5	224
MGMSG PZ GET TPZ IOSETTINGS;	0x07D6	224
		-

Messages Applicable to KPZ101 Only

MGMSG_KPZ_SET_KCUBEMMIPARAMS	<u>0x07F0</u>	235
MGMSG KPZ REQ KCUBEMMIPARAMS	0x07F1	235
MGMSG_KPZ_GET_KCUBEMMIPARAMS	0x07F2	235
MGMSG KPZ SET KCUBETRIGIOCONFIG	0x07F3	237
MGMSG_KPZ_REQ_KCUBETRIGIOCONFIG	0x07F4	237
MGMSG KPZ GET KCUBETRIGIOCONFIG	0x07F5	237

Messages Applicable to KPC101

MGMSG HW DISCONNECT	0x0002	49
MGMSG_HW_REQ_INFO	0x0005	52
MGMSG HW GET INFO	0x0006	52

MGMSG HW START UPDATEMSGS	0x0011	51
MGMSG HW STOP UPDATEMSGS	0x0012	51
MGMSG HW RESPONSE	0x0080	49
MGMSG HW RICHRESPONSE	0x0081	50
MGMSG MOD SET CHANENABLESTATE	0x0210	47
MGMSG MOD REQ CHANENABLESTATE	0x0211	47
MGMSG MOD GET CHANENABLESTATE	0x0212	47
MGMSG_MOD_IDENTIFY	0x0223	46
MGMSG HW SET KCUBEMMILOCK	0x0250	59
MGMSG_HW_REQ_KCUBEMMILOCK	0x0251	59
MGMSG HW GET KCUBEMMILOCK	0x0252	59
MGMSG PZ SET POSCONTROLMODE	0x0640	195
MGMSG PZ REQ POSCONTROLMODE	0x0641	195
MGMSG PZ GET POSCONTROLMODE	0x0642	195
MGMSG_PZ_SET_OUTPUTVOLTS	<u>0x0643</u>	198
MGMSG PZ REQ OUTPUTVOLTS	0x0644	198
MGMSG_PZ_GET_OUTPUTVOLTS	0x0645	198
MGMSG PZ SET OUTPUTPOS	0x0646	199
MGMSG PZ REQ OUTPUTPOS	0x0647	199
MGMSG_PZ_GET_OUTPUTPOS	0x0648	199
MGMSG PZ REQ MAXTRAVEL	0x0650	227
MGMSG_PZ_GET_MAXTRAVEL	<u>0x0651</u>	227
MGMSG PZ SET PICONSTS	0x0655	202
MGMSG_PZ_REQ_PICONSTS	<u>0x0656</u>	202
MGMSG PZ GET PICONSTS	0x0657	202
MGMSG PZ SET ZERO	0x0658	226
MGMSG_PZ_SET_INPUTVOLTSSRC	<u>0x0652</u>	200
MGMSG PZ REQ INPUTVOLTSSRC	0x0653	200
MGMSG_PZ_GET_INPUTVOLTSSRC	<u>0x0654</u>	200
MGMSG PZ REQ PZSTATUSBITS	0x065B	203
MGMSG_PZ_GET_PZSTATUSBITS	0x065C	203
MGMSG PZ REQ PZSTATUSUPDATE	0x0661	205
MGMSG PZ GET PZSTATUSUPDATE	0x0661	205
MGMSG_PZ_ACK_PZSTATUSUPDATE	<u>0x0662</u>	207
MGMSG PZ SET OUTPUTMAXVOLTS	0x0680	230
MGMSG_PZ_REQ_OUTPUTMAXVOLTS	<u>0x0681</u>	230
MGMSG PZ GET OUTPUTMAXVOLTS	0x0682	230
MGMSG PZ SET OUTPUTLUT	0x0700	215
MGMSG PZ REQ OUTPUTLUT	<u>0x0701</u>	215
MGMSG_PZ_GET_OUTPUTLUT	0x0702	215
MGMSG PZ SET OUTPUTLUTPARAMS	0x0703	217
MGMSG_PZ_REQ_OUTPUTLUTPARAMS	0x0704	217
MGMSG PZ GET OUTPUTLUTPARAMS MGMSG PZ START LUTOUTPUT	0x0705	217 221
MGMSG PZ START LUTOUTPUT	<u>0x0706</u> 0x0707	221
MGMSG PZ STOP LOTOOTPOT MGMSG PZ SET EEPROMPARAMS:	0x0707 0x07D0	221
MGMSG KPC SET KCUBETRIGIOCONFIG		428
MGMSG KPC SET KCOBETRIGIOCONFIG	0x07FC 0x07FD	428 428
MGMSG KPC GET KCUBETRIGIOCONFIG	0x07FE	428
MGMSG KPC GET KCUBENNIDGCONFIG	0x07FL 0x08F0	420
MGMSG KPC SET REOBEININFARAMS	0x08F1	432
MGMSG KPC GET KCUBEMMIPARAMS	0x08F2	432
MGMSG_KPC_GET_KCOBEIMINIFAKAMS	0x08F3	436
MGMSG KPC REQ IOSETTINGS	0x08F4	436
MGMSG KPC GET IOSETTINGS	0x08F5	436
	0.0010	

Messages Applicable to TSG001 and KSG101

MGMSG_MOD_IDENTIFY 0x0223	46
MGMSG MOD SET CHANENABLESTATE 0x0210	47
MGMSG MOD REQ CHANENABLESTATE 0x0211	47
MGMSG MOD GET CHANENABLESTATE 0x0212	47
MGMSG HW DISCONNECT 0x0002	49
MGMSG_HW_RESPONSE 0x0080	49
MGMSG HW RICHRESPONSE 0x0081	50
MGMSG_HW_START_UPDATEMSGS 0x0011	51
MGMSG HW STOP UPDATEMSGS 0x0012	51
MGMSG HW REQ INFO 0x0005	52
MGMSG_HW_GET_INFO 0x0006	52
MGMSG HUB REQ BAYUSED 0x0065	55
MGMSG_HUB_GET_BAYUSED 0x0066	55
MGMSG PZ GET PZSTATUSUPDATE 0x0661	205
MGMSG_PZ_ACK_PZSTATUSUPDATE 0x0662	207
MGMSG PZ SET EEPROMPARAMS: 0x07D0	222
MGMSG PZ SET TPZ DISPSETTINGS: 0x07D1	223
MGMSG_PZ_REQ_TPZ_DISPSETTINGS: 0x07D2	223
MGMSG PZ GET TPZ DISPSETTINGS; 0x07D3	223
MGMSG_PZ_SET_ZERO 0x0658	226
MGMSG PZ REQ MAXTRAVEL 0x0650	227
MGMSG PZ GET MAXTRAVEL 0x0651	227
MGMSG PZ SET TSG IOSETTINGS 0x07DA	240
MGMSG PZ REQ TSG IOSETTINGS 0x07DB	240
MGMSG_PZ_GET_TSG_IOSETTINGS 0x07DC	240
MGMSG PZ REQ TSG READING 0x07DD	242
MGMSG_PZ_GET_TSG_READING 0x07DE	242

Messages Applicable to KSG101 Only

MGMSG KSG SET KCUBEMMIPARAMS	<u>0x07F6</u>	243
MGMSG_KSG_REQ_KCUBEMMIPARAMS	<u>0x07F7</u>	243
MGMSG KSG GET KCUBEMMIPARAMS	<u>0x07F8</u>	243
MGMSG_KSG_SET_KCUBETRIGIOCONFIG	<u>0x07F9</u>	245
MGMSG KSG REQ KCUBETRIGIOCONFIG	<u>0x07FA</u>	245
MGMSG KSG GET KCUBETRIGIOCONFIG	<u>0x07FB</u>	245

Messages Applicable to MPZ601

MGMSG MOD IDENTIFY	0x0223	46
MGMSG MOD SET CHANENABLESTATE	0x0210	47
MGMSG MOD REQ CHANENABLESTATE	0x0211	47
MGMSG MOD GET CHANENABLESTATE	0x0212	47
MGMSG HW RESPONSE	0x0080	49
MGMSG HW RICHRESPONSE	0x0081	50
MGMSG HW START UPDATEMSGS	0x0011	51
MGMSG HW STOP UPDATEMSGS	0x0012	51
MGMSG HW REQ INFO	0x0005	52
MGMSG HW GET INFO	0x0006	52
MGMSG RACK REQ BAYUSED	0x0060	54
MGMSG RACK GET BAYUSED	0x0061	54
MGMSG_RACK_SET_DIGOUTPUTS	0x0228	57
MGMSG RACK REQ DIGOUTPUTS	0x0229	57
MGMSG_RACK_GET_DIGOUTPUTS	<u>0x0230</u>	57
MGMSG PZ SET POSCONTROLMODE	0x0640	195
MGMSG PZ REQ POSCONTROLMODE	0x0641	195
MGMSG_PZ_GET_POSCONTROLMODE	0x0642	195
MGMSG PZ SET OUTPUTVOLTS	0x0643	198
MGMSG_PZ_REQ_OUTPUTVOLTS	0x0644	198
MGMSG PZ GET OUTPUTVOLTS	0x0645	198
MGMSG PZ SET OUTPUTPOS	0x0646	199
MGMSG PZ REQ OUTPUTPOS	0x0647	199
MGMSG PZ GET OUTPUTPOS	0x0648	199
MGMSG_PZ_SET_INPUTVOLTSSRC	<u>0x0652</u>	200
MGMSG PZ REQ INPUTVOLTSSRC	0x0653	200
MGMSG_PZ_GET_INPUTVOLTSSRC	<u>0x0654</u>	200
MGMSG PZ SET PICONSTS	0x0655	202
MGMSG PZ REQ PICONSTS	0x0656	202
MGMSG PZ GET PICONSTS	0x0657	202
MGMSG PZ REQ PZSTATUSBITS	0x065B	203
MGMSG_PZ_GET_PZSTATUSBITS	0x065C	203
MGMSG PZ GET PZSTATUSUPDATE	0x0661	205
MGMSG_PZ_ACK_PZSTATUSUPDATE	<u>0x0662</u>	207
MGMSG PZ SET OUTPUTLUT	<u>0x0700</u>	215
MGMSG PZ REQ OUTPUTLUT	<u>0x0701</u>	215
MGMSG PZ GET OUTPUTLUT	<u>0x0702</u>	215
MGMSG PZ SET OUTPUTLUTPARAMS	<u>0x0703</u>	217
MGMSG_PZ_REQ_OUTPUTLUTPARAMS	<u>0x0704</u>	217
MGMSG PZ GET OUTPUTLUTPARAMS	<u>0x0705</u>	217
MGMSG_PZ_START_LUTOUTPUT	<u>0x0706</u>	221
MGMSG PZ STOP LUTOUTPUT	<u>0x0707</u>	221
MGMSG PZ SET ZERO	0x0658	226
MGMSG PZ REQ MAXTRAVEL	0x0650	227
MGMSG PZ GET MAXTRAVEL	0x0651	227
MGMSG_PZ_SET_IOSETTINGS:	0x0670	228
MGMSG PZ REQ IOSETTINGS:	<u>0x0671</u>	228
MGMSG_PZ_GET_IOSETTINGS:	<u>0x0672</u>	228
MGMSG PZ SET LUTVALUETYPE:	<u>0x0708</u>	234

Messages Applicable to TDC001 and KDC101

MGMSG MOD IDENTIFY	0x0223	46
MGMSG MOD SET CHANENABLESTATE	0x0210	47
MGMSG MOD REQ CHANENABLESTATE	0x0211	47
MGMSG MOD GET CHANENABLESTATE	0x0212	47
MGMSG HW DISCONNECT	0x0002	49
MGMSG_HW_RESPONSE	<u>0x0080</u>	49
MGMSG HW RICHRESPONSE	0x0081	50
MGMSG_HW_START_UPDATEMSGS	0x0011	51
MGMSG HW STOP UPDATEMSGS	0x0012	51
MGMSG HW REQ INFO	0x0005	52
MGMSG_HW_GET_INFO	<u>0x0006</u>	52
MGMSG HUB REQ BAYUSED	0x0065	55
MGMSG_HUB_GET_BAYUSED	<u>0x0066</u>	55
MGMSG MOT SET POSCOUNTER	<u>0x0410</u>	63
MGMSG_MOT_REQ_POSCOUNTER	<u>0x0411</u>	63
MGMSG MOT GET POSCOUNTER	0x0412	63
MGMSG MOT SET ENCCOUNTER	0x0409	64
MGMSG_MOT_REQ_ENCCOUNTER	<u>0x040A</u>	64
MGMSG MOT GET ENCCOUNTER	0x040B	64
MGMSG_MOT_SET_VELPARAMS	0x0413	66
MGMSG MOT REQ VELPARAMS	0x0414	66
MGMSG MOT GET VELPARAMS	0x0415	66
MGMSG MOT SET JOGPARAMS	0x0416	68
MGMSG MOT REQ JOGPARAMS	0x0417	68
MGMSG_MOT_GET_JOGPARAMS	<u>0x0418</u>	68
MGMSG MOT SET GENMOVEPARAMS	0x043A	73
MGMSG_MOT_REQ_GENMOVEPARAMS	<u>0x043B</u>	73
MGMSG MOT GET GENMOVEPARAMS	<u>0x043C</u>	73
MGMSG MOT SET MOVERELPARAMS	<u>0x0445</u>	74
MGMSG MOT REQ MOVERELPARAMS	<u>0x0446</u>	74
MGMSG MOT GET MOVERELPARAMS	<u>0x0447</u>	74
	0x0450	75 75
MGMSG MOT REQ MOVEABSPARAMS MGMSG MOT GET MOVEABSPARAMS	<u>0x0451</u> 0x0452	75 75
MGMSG_MOT_GET_MOVEABSPARAMS MGMSG_MOT_SET_HOMEPARAMS	0x0452 0x0440	75 76
MGMSG MOT SET HOMEPARAMS	0x0440 0x0441	76
MGMSG MOT GET HOMEPARAMS	0x0441 0x0442	76
MGMSG MOT SET LIMSWITCHPARAMS	0x0442 0x0423	78
MGMSG MOT SET EINSWITCH ARAMS	0x0423	78
MGMSG_MOT_REG_LIMSWITCHTARAMS	0x0424 0x0425	78
MGMSG MOT MOVE HOME	0x0423	80
MGMSG_MOT_MOVE_HOMED	0x0444	80
MGMSG MOT MOVE RELATIVE	0x0448	81
MGMSG MOT MOVE COMPLETED	0x0464	83
MGMSG MOT MOVE ABSOLUTE	0x0453	84
MGMSG MOT MOVE JOG	0x046A	86
MGMSG MOT MOVE VELOCITY	0x0457	87
MGMSG MOT MOVE STOP	0x0465	88
MGMSG MOT MOVE STOPPED	0x0466	89
MGMSG MOT SET DCPIDPARAMS	0x04A0	93
MGMSG MOT REQ DCPIDPARAMS	0x04A1	93
MGMSG MOT GET DCPIDPARAMS	0x04A2	93
MGMSG MOT SET AVMODES	0x04B3	95
MGMSG MOT REQ AVMODES	0x04B4	95
MGMSG MOT GET AVMODES	0x04B5	95

MGMSG	MOT	_SET_POTPARAMS	0x04B0	97
MGMSG	MOT	REQ_POTPARAMS	0x04B1	97
MGMSG	MOT	_GET_POTPARAMS	0x04B2	97
MGMSG	MOT	SET BUTTONPARAMS	0x04B6	100
MGMSG	MOT	REQ_BUTTONPARAMS	0x04B7	100
MGMSG	MOT	GET BUTTONPARAMS	0x04B8	100
MGMSG	MOT	SET EEPROMPARAMS	0x04B9	102
MGMSG	MOT	REQ_DCSTATUSUPDATE	<u>0x0490</u>	130
MGMSG	MOT	GET DCSTATUSUPDATE	0x0491	125
MGMSG	MOT	ACK_DCSTATUSUPDATE	0x0492	130
MGMSG	MOT	REQ_STATUSBITS	0x0429	131
MGMSG	MOT	GET STATUSBITS	0x042A	131
MGMSG	MOT	SUSPEND ENDOFMOVEMSGS	0x046B	132
MGMSG	MOT	RESUME ENDOFMOVEMSGS	0x046C	133

Messages Applicable to KDC101 Only

MGMSG_MOT_SET_KCUBEMMIPARAMS	<u>0x0520</u>	137
MGMSG MOT SET KCUBETRIGIOCONFIG	0x0523	140
MGMSG MOT SET KCUBEPOSTRIGPARAMS	0x0526	144

Messages Applicable to KVS30

MGMSG MOD IDENTIFY	0x0223	46
MGMSG MOD SET CHANENABLESTATE	0x0210	47
MGMSG MOD REQ CHANENABLESTATE	0x0211	47
MGMSG MOD GET CHANENABLESTATE	0x0212	47
MGMSG_HW_DISCONNECT	0x0002	49
MGMSG HW RICHRESPONSE	0x0081	50
MGMSG_HW_START_UPDATEMSGS	0x0011	51
MGMSG HW STOP UPDATEMSGS	0x0012	51
MGMSG HW REQ INFO	0x0005	52
MGMSG_HW_GET_INFO	<u>0x0006</u>	52
MGMSG MOD SET DIGOUTPUTS	0x0213	58
MGMSG_MOD_REQ_DIGOUTPUTS	0x0214	58
MGMSG MOD GET DIGOUTPUTS	0x0215	58
MGMSG_MOT_SET_POSCOUNTER	<u>0x0410</u>	63
MGMSG MOT REQ POSCOUNTER	0x0411	63
MGMSG MOT GET POSCOUNTER	0x0412	63
MGMSG_MOT_SET_ENCCOUNTER	<u>0x0409</u>	64
MGMSG MOT REQ ENCCOUNTER	0x040A	64
MGMSG_MOT_GET_ENCCOUNTER	<u>0x040B</u>	64
MGMSG MOT SET VELPARAMS	0x0413	66
MGMSG_MOT_REQ_VELPARAMS	<u>0x0414</u>	66
MGMSG MOT GET VELPARAMS	0x0415	66
MGMSG MOT SET JOGPARAMS	0x0416	68
MGMSG_MOT_REQ_JOGPARAMS	0x0417	68
MGMSG MOT GET JOGPARAMS	0x0418	68
MGMSG_MOT_SET_GENMOVEPARAMS	0x043A	73
MGMSG MOT REQ GENMOVEPARAMS	0x043B	73
MGMSG MOT GET GENMOVEPARAMS	0x043C	73
MGMSG MOT SET MOVERELPARAMS	0x0445	74
MGMSG MOT REQ MOVERELPARAMS	<u>0x0446</u>	74
MGMSG_MOT_GET_MOVERELPARAMS	0x0447	74
MGMSG MOT SET MOVEABSPARAMS	<u>0x0450</u>	75
MGMSG_MOT_REQ_MOVEABSPARAMS	0x0451	75
MGMSG MOT GET MOVEABSPARAMS	0x0452	75
MGMSG MOT SET HOMEPARAMS	0x0440	76

	0.0444	70
MGMSG_MOT_REQ_HOMEPARAMS	<u>0x0441</u>	76
MGMSG MOT GET HOMEPARAMS	0x0442	76
MGMSG_MOT_SET_LIMSWITCHPARAMS	<u>0x0423</u>	78
MGMSG MOT REQ LIMSWITCHPARAMS	0x0424	78
MGMSG MOT GET LIMSWITCHPARAMS	0x0425	78
MGMSG MOT MOVE HOME	0x0443	80
MGMSG MOT MOVE HOMED	0x0444	80
MGMSG_MOT_MOVE_RELATIVE	<u>0x0448</u>	81
MGMSG MOT MOVE COMPLETED	0x0464	83
MGMSG_MOT_MOVE_ABSOLUTE	<u>0x0453</u>	84
MGMSG MOT MOVE JOG	0x046A	86
MGMSG MOT MOVE VELOCITY	0x0457	87
MGMSG MOT MOVE STOP	0x0465	88
MGMSG MOT MOVE STOPPED	0x0466	89
MGMSG_MOT_SET_DCPIDPARAMS	<u>0x04A0</u>	93
MGMSG MOT REQ DCPIDPARAMS	0x04A1	93
MGMSG_MOT_GET_DCPIDPARAMS	<u>0x04A2</u>	93
MGMSG MOT SET EEPROMPARAMS	0x04B9	102
MGMSG MOT REQ DCSTATUSUPDATE	0x0490	130
MGMSG MOT GET DCSTATUSUPDATE	<u>0x0491</u>	125
MGMSG MOT ACK DCSTATUSUPDATE	0x0492	130
MGMSG_MOT_REQ_STATUSBITS	<u>0x0429</u>	131
MGMSG MOT GET STATUSBITS	0x042A	131
MGMSG MOT SUSPEND ENDOFMOVEMSGS	0x046B	132
MGMSG MOT RESUME ENDOFMOVEMSGS	0x046C	133
MGMSG MOT SET KCUBETRIGIOCONFIG	0x0523	140
MGMSG MOT SET KCUBEPOSTRIGPARAMS	0x0526	144
—		

Messages Applicable to TSC001 and KSC101

MGMSG MOD IDENTIFY	0x0223	46
MGMSG MOD SET CHANENABLESTATE	0x0210	47
MGMSG MOD REQ CHANENABLESTATE	0x0211	47
MGMSG_MOD_GET_CHANENABLESTATE	0x0212	47
MGMSG HW DISCONNECT	0x0002	49
MGMSG_HW_RESPONSE	0x0080	49
MGMSG HW RICHRESPONSE	0x0081	50
MGMSG HW START UPDATEMSGS	0x0011	51
MGMSG HW STOP UPDATEMSGS	0x0012	51
MGMSG HW REQ INFO	0x0005	52
MGMSG_HW_GET_INFO	0x0006	52
MGMSG HUB REQ BAYUSED	0x0065	55
MGMSG_HUB_GET_BAYUSED	0x0066	55
MGMSG MOT MOVE COMPLETED	0x0464	83
MGMSG MOT MOVE ABSOLUTE	0x0453	84
MGMSG MOT MOVE STOP	0x0465	88
MGMSG MOT SET AVMODES	0x04B3	95
MGMSG_MOT_REQ_AVMODES	0x04B4	95
MGMSG MOT GET AVMODES	0x04B5	95
MGMSG_MOT_SET_BUTTONPARAMS	0x04B6	100
MGMSG MOT REQ BUTTONPARAMS	0x04B7	100
MGMSG MOT GET BUTTONPARAMS	0x04B8	100
MGMSG MOT SET EEPROMPARAMS:	0x04B9	102
MGMSG MOT GET STATUSUPDATE	0x0481	122
MGMSG MOT SET SOL OPERATINGMODE	0x04C0	187
MGMSG MOT REQ SOL OPERATINGMODE	0x04C1	187
MGMSG MOT GET SOL OPERATINGMODE	0x04C2	187

MGMSG_MOT_SET_SOL_CYCLEPARAMS	0x04C3	189
MGMSG MOT REQ SOL CYCLEPARAMS	0x04C4	189
MGMSG_MOT_GET_SOL_CYCLEPARAMS	0x04C5	189
MGMSG MOT SET SOL INTERLOCKMODE	0x04C6	191
MGMSG MOT REQ SOL INTERLOCKMODE	0x04C7	191
MGMSG MOT GET SOL INTERLOCKMODE	0x04C8	191
MGMSG MOT SET SOL STATE	0x04CB	193
MGMSG_MOT_REQ_SOL_STATE	0x04CC	193
MGMSG MOT GET SOL STATE	0x04CD	193

Messages Applicable to KSC101 Only

MGMSG MOT SET KCUBEMMIPARAMS	0x0520	137
MGMSG MOT SET KCUBETRIGIOCONFIG	0x0523	140
MGMSG MOT SET KCUBEPOSTRIGPARAMS	0x0526	144

Messages Applicable to TST001, TST101, KST101 and K10CR1

MGMSG_MOD_IDENTIFY 0x02	<u>23</u> 46
MGMSG MOD SET CHANENABLESTATE 0x02	<u>10</u> 47
MGMSG_MOD_REQ_CHANENABLESTATE 0x02	<u>11</u> 47
MGMSG MOD GET CHANENABLESTATE 0x02	<u>12</u> 47
MGMSG HW START UPDATEMSGS 0x00	<u>11</u> 51
MGMSG HW STOP UPDATEMSGS 0x00	<u>12</u> 51
MGMSG HW REQ INFO 0x00	<mark>05</mark> 52
MGMSG_HW_GET_INFO 0x00	<u>06</u> 52
MGMSG MOT SET POSCOUNTER 0x04	<u>10</u> 63
MGMSG_MOT_REQ_POSCOUNTER 0x04	<u>11</u> 63
MGMSG MOT GET POSCOUNTER 0x04	<u>12</u> 63
MGMSG MOT SET ENCCOUNTER 0x04	<mark>09</mark> 64
MGMSG MOT REQ ENCCOUNTER 0x04	<mark>0A</mark> 64
MGMSG MOT GET ENCCOUNTER 0x04	<u>0B</u> 64
MGMSG_MOT_SET_VELPARAMS 0x04	<u>13</u> 66
MGMSG MOT REQ VELPARAMS 0x04	<u>14</u> 66
MGMSG_MOT_GET_VELPARAMS 0x04	<u>15</u> 66
MGMSG MOT SET JOGPARAMS 0x04	<u>16</u> 68
MGMSG MOT REQ JOGPARAMS 0x04	<u>17</u> 68
MGMSG MOT GET JOGPARAMS 0x04	<u>18</u> 68
MGMSG MOT SET GENMOVEPARAMS 0x04	<mark>3A</mark> 73
MGMSG_MOT_REQ_GENMOVEPARAMS 0x04	<u>3B</u> 73
MGMSG MOT GET GENMOVEPARAMS 0x04	<u>3C</u> 73
MGMSG_MOT_SET_MOVERELPARAMS 0x04	<u>45</u> 74
MGMSG MOT REQ MOVERELPARAMS 0x04	<mark>46</mark> 74
MGMSG MOT GET MOVERELPARAMS 0x04	<u>47</u> 74
MGMSG_MOT_SET_MOVEABSPARAMS 0x04	<mark>50</mark> 75
MGMSG MOT REQ MOVEABSPARAMS 0x04	<mark>51</mark> 75
MGMSG_MOT_GET_MOVEABSPARAMS 0x04	<mark>52</mark> 75
MGMSG MOT SET HOMEPARAMS 0x04	<u>40</u> 76
MGMSG_MOT_REQ_HOMEPARAMS 0x04	<mark>41</mark> 76
MGMSG MOT GET HOMEPARAMS 0x04	<mark>42</mark> 76
MGMSG MOT SET LIMSWITCHPARAMS 0x04	<u>23</u> 78
MGMSG_MOT_REQ_LIMSWITCHPARAMS 0x04	<mark>24</mark> 78
MGMSG MOT GET LIMSWITCHPARAMS 0x04	<u>25</u> 78
MGMSG_MOT_MOVE_HOME 0x04	<mark>43</mark> 80
MGMSG MOT MOVE HOMED 0x04	<u>44</u> 80
MGMSG MOT MOVE RELATIVE 0x04	<u>48</u> 81

MGMSG_MOT_MOVE_COMPLETED	<u>0x0464</u>	83
MGMSG MOT MOVE ABSOLUTE	0x0453	84
MGMSG_MOT_MOVE_JOG	<u>0x046A</u>	86
MGMSG MOT MOVE VELOCITY	0x0457	87
MGMSG MOT MOVE STOP	0x0465	88
MGMSG MOT MOVE STOPPED	0x0466	89
MGMSG MOT SET AVMODES	0x04B3	95
MGMSG MOT REQ AVMODES	0x04B4	95
MGMSG MOT GET AVMODES	0x04B5	95
MGMSG_MOT_SET_POTPARAMS	<u>0x04B0</u>	97
MGMSG MOT REQ POTPARAMS	0x04B1	97
MGMSG MOT GET POTPARAMS	0x04B2	97
MGMSG MOT SET BUTTONPARAMS	0x04B6	100
MGMSG MOT REQ BUTTONPARAMS	0x04B7	100
MGMSG_MOT_GET_BUTTONPARAMS	<u>0x04B8</u>	100
MGMSG MOT SET EEPROMPARAMS	0x04B9	102
MGMSG_MOT_REQ_STATUSBITS	<u>0x0429</u>	131
MGMSG MOT GET STATUSBITS	0x042A	131

Messages Applicable to TST101 and KST101

MGMSG_MOT_SET_TSTACTUATORTYPE	0x04FE	122
MGMSG MOT SET POWERPARAMS	0x0426	70
MGMSG MOT REQ POWERPARAMS	0x0427	71
MGMSG MOT GET POWERPARAMS	0x0428	71

Messages Applicable to TST001

MGMSG MOT SET POWERPARAMS 0x04	<u>26</u> 70
MGMSG_MOT_REQ_POWERPARAMS 0x04	<mark>27</mark> 71
MGMSG MOT GET POWERPARAMS 0x04	<mark>28</mark> 71

Messages Applicable to KST101 Only

MGMSG MOT SET KCUBEMMIPARAMS 0x0520	137
MGMSG_MOT_SET_KCUBETRIGIOCONFIG 0x0523	140
MGMSG MOT SET KCUBEPOSTRIGPARAMS 0x0526	144
MGMSG_MOT_SET_KCUBEKSTLOOPPARAMS 0x0529	148
MGMSG_MOT_REQ_KCUBEKSTLOOPPARAMS 0x052A	148
MGMSG MOT GET KCUBEKSTLOOPPARAMS 0x052B	148

Messages Applicable to KST201 Only

MGMSG HW REQ INFO	0x0005	52
MGMSG HW GET INFO	0x0006	52
MGMSG HW START UPDATEMSGS	0x0011	51
MGMSG_HW_STOP_UPDATEMSGS	0x0012	51
MGMSG MOD SET CHANENABLESTATE	0x0210	47
MGMSG_MOD_REQ_CHANENABLESTATE	0x0211	47
MGMSG MOD GET CHANENABLESTATE	0x0212	47
MGMSG MOD IDENTIFY	0x0223	46
MGMSG MOT SET ENCCOUNTER	0x0409	64
MGMSG MOT REQ ENCCOUNTER	0x040A	64
MGMSG_MOT_GET_ENCCOUNTER	0x040B	64
MGMSG MOT SET POSCOUNTER	0x0410	63
MGMSG_MOT_REQ_POSCOUNTER	0x0411	63
MGMSG MOT GET POSCOUNTER	0x0412	63
MGMSG MOT SET VELPARAMS	0x0413	66

MGMSG_MOT_REQ_VELPARAMS	0x0414	66
MGMSG MOT GET VELPARAMS	0x0415	66
MGMSG_MOT_SET_JOGPARAMS	<u>0x0416</u>	68
MGMSG MOT REQ JOGPARAMS	0x0417	68
MGMSG MOT GET JOGPARAMS	0x0418	68
MGMSG MOT REQ STATUSBITS	0x0429	131
MGMSG MOT GET STATUSBITS	0x042A	131
MGMSG MOT SET GENMOVEPARAMS	<u>0x043A</u>	73
MGMSG MOT REQ GENMOVEPARAMS	0x043B	73
MGMSG MOT GET GENMOVEPARAMS	<u>0x043C</u>	73
MGMSG MOT SET HOMEPARAMS	0x0440	76
MGMSG MOT REQ HOMEPARAMS	0x0441	76
MGMSG MOT GET HOMEPARAMS	0x0442	76
MGMSG MOT SET MOVERELPARAMS	0x0445	74
MGMSG MOT REQ MOVERELPARAMS	0x0446	74
MGMSG MOT GET MOVERELPARAMS	0x0447	74
MGMSG MOT SET MOVEABSPARAMS	0x0450	75
MGMSG MOT REQ MOVEABSPARAMS	0x0451	75
MGMSG MOT GET MOVEABSPARAMS	0x0452	75
MGMSG MOT MOVE HOME	0x0443	80
MGMSG MOT MOVE HOMED	0x0444	80
MGMSG MOT MOVE RELATIVE	0x0448	81
MGMSG MOT MOVE ABSOLUTE	0x0453	84
MGMSG MOT MOVE VELOCITY	0x0457	87
MGMSG MOT MOVE JOG	0x046A	86
MGMSG MOT MOVE COMPLETED	0x0464	83
MGMSG MOT MOVE STOP	0x0465	88
MGMSG MOT MOVE STOPPED	0x0466	89
MGMSG MOT SET EEPROMPARAMS	0x04B9	102
MGMSG MOT SET TSTACTUATORTYPE	0x04FE	122
MGMSG MOT SET KCUBEMMIPARAMS	<u>0x0520</u>	137
MGMSG MOT REQ KCUBEMMIPARAMS	0x0521	137
MGMSG MOT GET KCUBEMMIPARAMS	0x0522	137
MGMSG MOT SET KCUBETRIGIOCONFIG	0x0523	140
MGMSG MOT REQ KCUBETRIGIOCONFIG	0x0524	140
MGMSG_MOT_GET_KCUBETRIGIOCONFIG	0x0525	140
MGMSG MOT SET KCUBEPOSTRIGPARAMS	0x0526	144
MGMSG MOT REQ KCUBEPOSTRIGPARAMS	0x0527	144
MGMSG MOT GET KCUBEPOSTRIGPARAMS	0x0528	144

Messages Applicable to K10CR1 Only

MGMSG_MOT_SET_TRIGGER	0x0500	134
MGMSG MOT REQ TRIGGER	0x0501	134
MGMSG MOT GET TRIGGER	0x0502	134

Messages Applicable to BSC10x and BSC20x

MGMSG MOD IDENTIFY	0x0223	46
MGMSG MOD SET CHANENABLESTATE	0x0210	47
MGMSG MOD REQ CHANENABLESTATE	0x0211	47
MGMSG_MOD_GET_CHANENABLESTATE	0x0212	47
MGMSG HW DISCONNECT	0x0002	49
MGMSG_HW_RESPONSE	<u>0x0080</u>	49
MGMSG HW RICHRESPONSE	0x0081	50

MGMSG HW START UPDATEMSGS	0x0011	51
MGMSG_HW_START_OFDATEMSGS	0x0011 0x0012	51
MGMSG HW REQ INFO	0x00012	52
MGMSG HW GET INFO	0x0006	52
MGMSG RACK REQ BAYUSED	0x0060	54
MGMSG RACK GET BAYUSED	0x0061	54
MGMSG MOD SET DIGOUTPUTS	0x0213	58
MGMSG MOD REQ DIGOUTPUTS	0x0214	58
MGMSG MOD GET DIGOUTPUTS	0x0215	58
MGMSG MOT SET POSCOUNTER	0x0410	63
MGMSG MOT REQ POSCOUNTER	0x0411	63
MGMSG MOT GET POSCOUNTER	0x0412	63
MGMSG MOT SET ENCCOUNTER	0x0409	64
MGMSG MOT REQ ENCCOUNTER	0x040A	64
MGMSG MOT GET ENCCOUNTER	0x040B	64
MGMSG MOT SET VELPARAMS	0x0413	66
MGMSG MOT REQ VELPARAMS	0x0414	66
MGMSG MOT GET VELPARAMS	0x0415	66
MGMSG MOT SET JOGPARAMS	0x0416	68
MGMSG_MOT_REQ_JOGPARAMS	0x0417	68
MGMSG MOT GET JOGPARAMS	0x0418	68
MGMSG_MOT_REQ_ADCINPUTS	0x042B	70
MGMSG MOT GET ADCINPUTS	0x042C	70
MGMSG_MOT_SET_POWERPARAMS	0x0426	71
MGMSG MOT REQ POWERPARAMS	0x0427	71
MGMSG MOT GET POWERPARAMS	0x0428	71
MGMSG_MOT_SET_GENMOVEPARAMS	<u>0x043A</u>	73
MGMSG MOT REQ GENMOVEPARAMS	0x043B	73
MGMSG_MOT_GET_GENMOVEPARAMS	<u>0x043C</u>	73
MGMSG MOT SET MOVERELPARAMS	0x0445	74
MGMSG_MOT_REQ_MOVERELPARAMS	<u>0x0446</u>	74
MGMSG MOT GET MOVERELPARAMS	0x0447	74
MGMSG MOT SET MOVEABSPARAMS	0x0450	75
MGMSG_MOT_REQ_MOVEABSPARAMS	<u>0x0451</u>	75
MGMSG MOT GET MOVEABSPARAMS	<u>0x0452</u>	75
MGMSG_MOT_SET_HOMEPARAMS	<u>0x0440</u>	76
MGMSG MOT REQ HOMEPARAMS	<u>0x0441</u>	76
MGMSG MOT GET HOMEPARAMS	0x0442	76
MGMSG MOT SET LIMSWITCHPARAMS	0x0423	78
MGMSG_MOT_REQ_LIMSWITCHPARAMS	<u>0x0424</u>	78
MGMSG MOT GET LIMSWITCHPARAMS	0x0425	78
	0x0443	80
MGMSG MOT MOVE HOMED	0x0444	80
MGMSG MOT MOVE RELATIVE	0x0448	81
MGMSG MOT MOVE COMPLETED	0x0464	83
MGMSG MOT MOVE ABSOLUTE	0x0453	84 86
MGMSG MOT MOVE JOG MGMSG MOT MOVE VELOCITY	<u>0x046A</u> 0x0457	86 87
MGMSG MOT MOVE STOP	0x0465	88 80
MGMSG MOT MOVE STOPPED MGMSG MOT SET EEPROMPARAMS	0x0466 0x04B9	89 102
MGMSG MOT SET EEPROMPARANS MGMSG MOT GET STATUSUPDATE	0x0489 0x0481	102
MGMSG_MOT_GET_STATUSUPDATE	0x0481 0x0480	122
MGMSG MOT REQ STATUSOPDATE	0x0480 0x0429	131
MGMSG_MOT_KEQ_STATUSBITS	0x0429 0x042A	131
MGMSG MOT GET STATGSBITS	0x042A 0x0500	131
MGMSG MOT SET TRIGGER	0x0500	134
member mot neg throach	0.0001	104

MGMSG MOT GET TRIGGER	0x0502	134
MGMSG MOT SET KCUBEKSTLOOPPARAMS	0x0529	148
MGMSG_MOT_REQ_KCUBEKSTLOOPPARAMS	0x052A	148
MGMSG MOT GET KCUBEKSTLOOPPARAMS	0x052B	148

Messages Applicable to LTS150 and LTS300

MGMSG_MOD_IDENTIFY	<u>0x0223</u>	46
MGMSG MOD SET CHANENABLESTATE	0x0210	47
MGMSG MOD REQ CHANENABLESTATE	0x0211	47
MGMSG MOD GET CHANENABLESTATE	0x0212	47
MGMSG HW START UPDATEMSGS	0x0011	51
MGMSG HW STOP UPDATEMSGS	0x0012	51
MGMSG HW REQ INFO	0x0005	52
MGMSG HW GET INFO	0x0006	52
MGMSG MOT SET VELPARAMS	0x0413	66
MGMSG MOT REQ VELPARAMS	0x0414	66
MGMSG_MOT_GET_VELPARAMS	0x0415	66
MGMSG MOT SET JOGPARAMS	0x0416	68
MGMSG_MOT_REQ_JOGPARAMS	0x0417	68
MGMSG MOT GET JOGPARAMS	0x0418	68
MGMSG_MOT_SET_GENMOVEPARAMS	0x043A	73
MGMSG MOT REQ GENMOVEPARAMS	0x043B	73
MGMSG MOT GET GENMOVEPARAMS	0x043C	73
MGMSG_MOT_SET_MOVERELPARAMS	0x0445	74
MGMSG MOT REQ MOVERELPARAMS	0x0446	74
MGMSG_MOT_GET_MOVERELPARAMS	0x0447	74
MGMSG MOT SET MOVEABSPARAMS	0x0450	75
MGMSG MOT REQ MOVEABSPARAMS	0x0451	75
MGMSG MOT GET MOVEABSPARAMS	0x0452	75
MGMSG MOT SET HOMEPARAMS	0x0440	76
MGMSG_MOT_REQ_HOMEPARAMS	0x0441	76
MGMSG MOT GET HOMEPARAMS	0x0442	76
MGMSG_MOT_MOVE_HOME	0x0443	80
MGMSG MOT MOVE HOMED	0x0444	80
MGMSG MOT MOVE RELATIVE	0x0448	81
MGMSG MOT MOVE COMPLETED	0x0464	83
MGMSG MOT MOVE ABSOLUTE	0x0453	84
MGMSG_MOT_MOVE_JOG	<u>0x046A</u>	86
MGMSG MOT MOVE VELOCITY	0x0457	87
MGMSG_MOT_MOVE_STOP	0x0465	88
MGMSG MOT MOVE STOPPED	0x0466	89
MGMSG MOT SET BOWINDEX	0x0450	90
MGMSG MOT REQ BOWINDEX	0x0451	90
MGMSG MOT GET BOWINDEX	0x0452	90
MGMSG_MOT_SET_BUTTONPARAMS	0x04B6	100
MGMSG MOT REQ BUTTONPARAMS	0x04B7	100
MGMSG_MOT_GET_BUTTONPARAMS	0x04B8	100
MGMSG MOT SET EEPROMPARAMS	0x04B9	102
MGMSG MOT GET STATUSUPDATE	0x0481	122
MGMSG MOT REQ STATUSUPDATE	0x0480	124
MGMSG MOT REQ STATUSBITS	0x0429	131
MGMSG_MOT_GET_STATUSBITS	<u>0x042A</u>	131

Messages Applicable to MLJ050, MLJ150 and MLJ250

MGMSG MOD IDENTIFY	0x0223	46
MGMSG MOD SET CHANENABLESTATE	0x0210	47
MGMSG HW START UPDATEMSGS	0x0011	51
MGMSG HW STOP UPDATEMSGS	0x0012	51
MGMSG HW REQ INFO	0x0005	52
MGMSG_HW_GET_INFO	<u>0x0006</u>	52
MGMSG MOT SET POSCOUNTER	0x0410	63
MGMSG_MOT_REQ_POSCOUNTER	<u>0x0411</u>	63
MGMSG MOT GET POSCOUNTER	0x0412	63
MGMSG MOT SET VELPARAMS	0x0413	66
MGMSG_MOT_REQ_VELPARAMS	<u>0x0414</u>	66
MGMSG MOT GET VELPARAMS	<u>0x0415</u>	66
MGMSG_MOT_SET_JOGPARAMS	<u>0x0416</u>	68
MGMSG MOT REQ JOGPARAMS	0x0417	68
MGMSG_MOT_GET_JOGPARAMS	<u>0x0418</u>	68
MGMSG MOT SET GENMOVEPARAMS	0x043A	73
MGMSG MOT REQ GENMOVEPARAMS	0x043B	73
MGMSG_MOT_GET_GENMOVEPARAMS	<u>0x043C</u>	73
MGMSG MOT SET MOVERELPARAMS	0x0445	74
MGMSG_MOT_REQ_MOVERELPARAMS	<u>0x0446</u>	74
MGMSG MOT GET MOVERELPARAMS	<u>0x0447</u>	74
MGMSG MOT SET MOVEABSPARAMS	0x0450	75
MGMSG MOT REQ MOVEABSPARAMS	0x0451	75
MGMSG MOT GET MOVEABSPARAMS	0x0452	75
MGMSG_MOT_SET_HOMEPARAMS	<u>0x0440</u>	76
MGMSG MOT REQ HOMEPARAMS	0x0441	76
MGMSG_MOT_GET_HOMEPARAMS	0x0442	76
MGMSG MOT SET LIMSWITCHPARAMS	0x0423	78
MGMSG MOT REQ LIMSWITCHPARAMS	0x0424	78
MGMSG MOT GET LIMSWITCHPARAMS	0x0425	78
MGMSG MOT MOVE HOME	0x0443	80
MGMSG_MOT_MOVE_HOMED	<u>0x0444</u>	80
MGMSG MOT MOVE RELATIVE	0x0448	81
MGMSG_MOT_MOVE_COMPLETED	<u>0x0464</u>	83
MGMSG MOT MOVE ABSOLUTE	<u>0x0453</u>	84
MGMSG MOT MOVE JOG	0x046A	86
MGMSG MOT MOVE VELOCITY	0x0457	87
MGMSG MOT MOVE STOP	0x0465	88
MGMSG_MOT_MOVE_STOPPED	0x0466	89
MGMSG MOT SET BOWINDEX	0x0450	90
	0x0451	90
MGMSG MOT GET BOWINDEX	0x0452	90
MGMSG MOT SET EEPROMPARAMS	0x04B9	102
MGMSG MOT GET STATUSUPDATE	0x0481	122
MGMSG MOT REQ STATUSPIZE	0x0480	124
MGMSG_MOT_REQ_STATUSBITS	0x0429	131
MGMSG MOT GET STATUSBITS	0x042A	131

Messages Applicable to MFF101 and MFF102

MGMSG_MOD_IDENTIFY	<u>0x0223</u>	46
MGMSG HW START UPDATEMSGS	<u>0x0011</u>	51
MGMSG HW STOP UPDATEMSGS	<u>0x0012</u>	51
MGMSG HW REQ INFO	<u>0x0005</u>	52
MGMSG HW GET INFO	0x0006	52
MGMSG_MOT_MOVE_JOG (<u>0x046A</u>	86
MGMSG MOT SET EEPROMPARAMS	<u>0x04B9</u>	102
MGMSG_MOT_REQ_STATUSBITS	<u>0x0429</u>	131
MGMSG MOT GET STATUSBITS (<u>0x042A</u>	131
MGMSG MOT SET MFF OPERPARAMS	<u>0x0510</u>	182
MGMSG_MOT_REQ_MFF_OPERPARAMS	<u>0x0511</u>	182
MGMSG MOT GET MFF OPERPARAMS	<u>0x0512</u>	182

	00222	10
MGMSG_MOD_IDENTIFY MGMSG_MOD_SET_CHANENABLESTATE	<u>0x0223</u> 0x0210	46 47
MGMSG MOD SET CHANENABLESTATE	0x0210 0x0211	47
MGMSG MOD GET CHANENABLESTATE	0x0211 0x0212	47
MGMSG HW DISCONNECT	0x00212	47
MGMSG HW RESPONSE	0x0002	49 49
MGMSG_HW_RESPONSE	0x0080	49 50
MGMSG HW START UPDATEMSGS	0x00011	51
MGMSG_HW_START_OPDATEMSGS	0x0011 0x0012	51
MGMSG HW BEQ INFO	0x00012	52
MGMSG HW GET INFO	0x0005	52
MGMSG_RACK_REQ_BAYUSED	0x0060	54
MGMSG RACK GET BAYUSED	0x0061	54
MGMSG_MACK_GET_BATOSED	0x0213	58
MGMSG MOD SET DIGOUTPUTS	0x0213	58
MGMSG_MOD_REQ_DIGOUTPUTS	0x0214 0x0215	58
MGMSG MOD GET DIGOUTPOTS	0x0213	63
MGMSG MOT SET POSCOUNTER	0x0410 0x0411	63
MGMSG_MOT_REQ_POSCOUNTER	0x0411 0x0412	63
MGMSG_MOT_SET_ENCCOUNTER MGMSG_MOT_REQ_ENCCOUNTER	<u>0x0409</u> 0x040A	64 64
MGMSG MOT GET ENCCOUNTER	0x040A 0x040B	64
MGMSG MOT SET VELPARAMS	0x040B	66
MGMSG MOT SET VELTAKAMS MGMSG MOT REQ VELPARAMS	0x0413	66
MGMSG MOT GET VELPARAMS	0x0414	66
MGMSG MOT SET JOGPARAMS	0x0415	68
MGMSG MOT BET SOGLAMMIS	0x0410	68
MGMSG MOT GET JOGPARAMS	0x0417	68
MGMSG MOT SET GENMOVEPARAMS	0x043A	73
MGMSG MOT REQ GENMOVEPARAMS	0x043B	73
MGMSG MOT GET GENMOVEPARAMS	0x043C	73
MGMSG MOT SET MOVERELPARAMS	0x0445	74
MGMSG MOT REQ MOVERELPARAMS	0x0446	74
MGMSG MOT GET MOVERELPARAMS	0x0447	74
MGMSG MOT SET MOVEABSPARAMS	0x0450	75
MGMSG MOT REQ MOVEABSPARAMS	0x0451	75
MGMSG MOT GET MOVEABSPARAMS	0x0452	75
MGMSG MOT SET HOMEPARAMS	0x0440	76
MGMSG MOT REQ HOMEPARAMS	0x0441	76
MGMSG MOT GET HOMEPARAMS	0x0442	76
MGMSG MOT SET LIMSWITCHPARAMS	0x0423	78
MGMSG MOT REQ LIMSWITCHPARAMS	0x0424	78
MGMSG MOT GET LIMSWITCHPARAMS	0x0425	78
MGMSG MOT MOVE HOME	0x0443	80
MGMSG MOT MOVE HOMED	0x0444	80
MGMSG MOT MOVE RELATIVE	0x0448	81
MGMSG MOT MOVE COMPLETED	0x0464	83
MGMSG MOT MOVE ABSOLUTE	0x0453	84
MGMSG MOT MOVE JOG	0x046A	86
MGMSG MOT MOVE VELOCITY	0x0457	87
MGMSG MOT MOVE STOP	0x0465	88
MGMSG MOT MOVE STOPPED	0x0466	89
MGMSG MOT SET EEPROMPARAMS	0x04B9	102

Messages Applicable to BBD10x, BBD20x, BBD30x, TBD001 and KBD101

Messages Applicable to BBD10x, BBD20x, and TBD001 (Continued)

MGMSG MOT SET POSITIONLOOPPARAMS	0x04D7	103
MGMSG MOT REQ POSITIONLOOPPARAMS	0x04D8	103
MGMSG MOT GET POSITIONLOOPPARAMS	0x04D9	103
MGMSG MOT SET MOTOROUTPUTPARAMS	0x04DA	106
MGMSG MOT REQ MOTOROUTPUTPARAMS	0x04DB	106
MGMSG_MOT_GET_MOTOROUTPUTPARAMS	<u>0x04DC</u>	106
MGMSG MOT SET TRACKSETTLEPARAMS	0x04E0	108
MGMSG MOT REQ TRACKSETTLEPARAMS	0x04E1	108
MGMSG_MOT_GET_TRACKSETTLEPARAMS	0x04E2	108
MGMSG MOT SET PROFILEMODEPARAMS	0x04E3	111
MGMSG_MOT_REQ_PROFILEMODEPARAMS	0x04E4	111
MGMSG MOT GET PROFILEMODEPARAMS	0x04E5	111
MGMSG MOT SET JOYSTICKPPARAMS	0x04E6	113
MGMSG MOT REQ JOYSTICKPPARAMS	0x04E7	113
MGMSG MOT GET JOYSTICKPPARAMS	0x04E8	113
MGMSG MOT SET CURRENTLOOPPARAMS	0x04D4	115
MGMSG MOT REQ CURRENTLOOPPARAMS	0x04D5	115
MGMSG MOT GET CURRENTLOOPPARAMS	0x04D6	115
MGMSG MOT SET SETTLEDCURRENTLOOPPARAMS	0x04E9	118
MGMSG MOT REQ SETTLEDCURRENTLOOPPARAMS	0x04EA	118
MGMSG MOT GET SETTLEDCURRENTLOOPPARAMS	0x04EB	118
MGMSG MOT SET STAGEAXISPARAMS	0x04F0	120
MGMSG MOT REQ STAGEAXISPARAMS	0x04F1	120
MGMSG MOT GET STAGEAXISPARAMS	0x04F2	120
MGMSG MOT GET DCSTATUSUPDATE	<u>0x0491</u>	125
MGMSG MOT REQ DCSTATUSUPDATE	0x0490	130
MGMSG MOT ACK DCSTATUSUPDATE	0x0492	130
MGMSG MOT REQ STATUSBITS	0x0429	131
MGMSG MOT SUSPEND ENDOFMOVEMSGS	0x046B	132
MGMSG MOT RESUME ENDOFMOVEMSGS	0x046C	133
MGMSG MOT SET TRIGGER	0x0500	134
MGMSG MOT REQ TRIGGER	0x0501	134
MGMSG MOT GET TRIGGER	0x0502	134

Messages Applicable to KBD101 Only

MGMSG MOT SET KCUBEMMIPARAMS	0x0520	137
MGMSG MOT SET KCUBETRIGIOCONFIG	0x0523	140
MGMSG MOT SET KCUBEPOSTRIGPARAMS	0x0526	144

Messages Applicable to PDXC2

MGMSG MOD IDENTIFY	0x0223	46
MGMSG MOD SET CHANENABLESTATE	0x0210	47
MGMSG MOD REQ CHANENABLESTATE	0x0211	47

MGMSG_MOD_GET_CHANENABLESTATE	<u>0x0212</u>	47
MGMSG HW DISCONNECT	0x0002	49
MGMSG_HW_RICHRESPONSE	0x0081	50
MGMSG HW REQ INFO	0x0005	52
MGMSG HW GET INFO	0x0006	52
MGMSG MOT MOVE HOME	0x0443	80
MGMSG MOT MOVE HOMED	0x0444	80
MGMSG_MOT_MOVE_STOP	<u>0x0465</u>	88
MGMSG MOT SET EEPROMPARAMS	0x04B9	102
MGMSG_MOT_SET_STAGEAXISPARAMS	<u>0x04F0</u>	120
MGMSG MOT REQ STAGEAXISPARAMS	0x04F1	120
MGMSG MOT GET STAGEAXISPARAMS	0x04F2	120
MGMSG PZ SET POSCONTROLMODE	0x0640	195
MGMSG PZ REQ POSCONTROLMODE	0x0641	195
MGMSG_PZ_GET_POSCONTROLMODE	0x0642	195
MGMSG_PZMOT_MOVE_START	0x210	196
MGMSG_PZMOT_PULSE_PARA_ACQUIRE	0x2102	197
MGMSG PZMOT PULSE PARA AQUIRED	0X2103	197
MGMSG PZMOT MOVE JOG	0x08D9	419
MGMSG_PZMOT_MOVE_COMPLETED	<u>0x08D6</u>	418
MGMSG PZMOT REQ STATUSUPDATE	0x08E0	420
MGMSG_PZMOT_GET_STATUSUPDATE	0x08E1	420
MGMSG PZMOT SET PARAMS	0x08C0	371
MGMSG_PZMOT_REQ_PARAMS	<u>0x08C1</u>	371
MGMSG PZMOT GET PARAMS	0x08C2	371

PZMOT_PARAM Sub-Messages Applicable to TIM101

```
Set/Request/Get_PZMOT_ CloseLoopParams (sub-message ID = 39)
Set/Request/Get_PZMOT_ Etmconfig (sub-message ID = 3B)
Set/Request/Get_PZMOT_ EtmParams (sub-message ID = 3C)
Set/Request/Get_PZMOT_ TPOS (sub-message ID = 3D)
Set/Request/Get_PZMOT_ EthrenetParams (sub-message ID = 3F)
Set/Request/Get_PZMOT_ CURRENT_POS (sub-message ID = 40)
Set/Request/Get_PZMOT_ AMD (sub-message ID = 43)
Set/Request/Get_PZMOT_JogParams (sub-message ID = 44)
Set/Request/Get_PZMOT_AmpOutParams (sub-message ID = 45)
Set/Request/Get_PZMOT_OpenMoveParams (sub-message ID = 46)
Set/Request/Get_PZMOT_CloseMoveParams (sub-message ID = 47)
```

MGMSG_MOT_SET_MOTTRIGIOCONFIG	<u>0x0260</u>	156
MGMSG MOT REQ MOTTRIGIOCONFIG	0x0261	156
MGMSG MOT GET MOTTRIGIOCONFIG	0x0262	156
MGMSG MOT SET IOCONFIG	0x0263	162
MGMSG MOT REQ IOCONFIG	0x0264	162
MGMSG_MOT_GET_IOCONFIG	<u>0x0265</u>	162
MGMSG MOT SET AUXIOCONFIG	0x0266	164
MGMSG_MOT_REQ_AUXIOCONFIG	<u>0x0267</u>	164
MGMSG MOT GET AUXIOCONFIG	0x0268	164
MGMSG MOT SET ANALOGMONITORCONFIG	0x0269	166
MGMSG MOT REQ ANALOGMONITORCONFIG	0x0270	166
MGMSG MOT GET ANALOGMONITORCONFIG	0x0271	166
MGMSG_MOD_SET_POSTRIGENSTAT	<u>0x0272</u>	168
MGMSG MOD REQ POSTRIGENSTAT	0x0273	168
MGMSG_MOD_GET_POSTRIGENSTAT	<u>0x0274</u>	168
MGMSG MOT SET LCDDISPLAYPARAMS	<u>0x0543</u>	168
MGMSG MOT REQ LCDDISPLAYPARAMS	0x0544	168
MGMSG_MOT_GET_LCDDISPLAYPARAMS	<u>0x0545</u>	168
MGMSG MOT SET LCDMOVEPARAMS	<u>0x0546</u>	169
MGMSG_MOT_REQ_LCDMOVEPARAMS	<u>0x0547</u>	169
MGMSG MOT GET LCDMOVEPARAMS	<u>0x0548</u>	169
MGMSG MOT SET MOVESYNCHARRAY	0x0A00	171
MGMSG MOT SET MOVESYNCHPARAMS	0x0A03	174
MGMSG MOT MOVE SYNCHSTART	0x0A06	176

Messages Applicable to BBD301, BBD302 and BBD303 Only

MGMSG MOD IDENTIFY	0x0223	46
MGMSG_MOD_IDENTIFY		40 49
MGMSG HW RESPONSE		49
MGMSG HW RICHRESPONSE		50
MGMSG HW START UPDATEMSGS		51
MGMSG HW STOP UPDATEMSGS	0x0012	51
MGMSG HW REQ INFO	0x0005	52
MGMSG HW GET INFO		52
MGMSG HUB REQ BAYUSED	0x0065	55
MGMSG HUB GET BAYUSED	0x0066	55
MGMSG PZ SET NTMODE	0x0603	249
MGMSG PZ REQ NTMODE	0x0604	250
MGMSG PZ GET NTMODE	0x0605	250
MGMSG PZ SET NTTRACKTHRESHOLD	0x0606	251
MGMSG_PZ_REQ_NTTRACKTHRESHOLD	0x0607	251
MGMSG PZ GET NTTRACKTHRESHOLD	0x0608	251
MGMSG PZ SET NTCIRCHOMEPOS	0x0609	252
MGMSG_PZ_REQ_NTCIRCHOMEPOS	0x0610	252
MGMSG PZ GET NTCIRCHOMEPOS	0x0611	252
MGMSG_PZ_MOVE_NTCIRCTOHOMEPOS	0x0612	253
MGMSG PZ REQ NTCIRCCENTREPOS	0x0613	254
MGMSG PZ GET NTCIRCCENTREPOS	0x0614	254
MGMSG PZ SET NTCIRCPARAMS	0x0618	256
MGMSG PZ REQ NTCIRCPARAMS	0x0619	256
MGMSG_PZ_GET_NTCIRCPARAMS	0x0620	256
MGMSG PZ SET NTCIRCDIA	0x061A	259
MGMSG_PZ_SET_NTCIRCDIALUT	<u>0x0621</u>	260
MGMSG PZ REQ NTCIRCDIALUT	0x0622	260
MGMSG PZ GET NTCIRCDIALUT	0x0623	260
MGMSG PZ SET NTPHASECOMPPARAMS	0x0626	262
MGMSG PZ REQ NTPHASECOMPPARAMS	0x0627	262
MGMSG_PZ_GET_NTPHASECOMPPARAMS	0x0628	262
MGMSG PZ SET NTTIARANGEPARAMS	0x0630	264
MGMSG_PZ_REQ_NTTIARANGEPARAMS	0x0631	264
MGMSG PZ GET NTTIARANGEPARAMS	0x0632	264
MGMSG PZ SET NTGAINPARAMS	0x0633	267
MGMSG PZ REQ NTGAINPARAMS		267
MGMSG PZ GET NTGAINPARAMS		267
MGMSG_PZ_SET_NTTIALPFILTERPARAMS		268
MGMSG PZ REQ NTTIALPFILTERPARAMS		268
MGMSG_PZ_GET_NTTIALPFILTERPARAMS		268
MGMSG PZ REQ NTTIAREADING		270
MGMSG PZ GET NTTIAREADING		270
MGMSG PZ SET NTFEEDBACKSRC		272
MGMSG PZ REQ NTFEEDBACKSRC		272
MGMSG_PZ_GET_NTFEEDBACKSRC		272
MGMSG PZ REQ NTSTATUSBITS		274
MGMSG_PZ_GET_NTSTATUSURDATE		274
MGMSG PZ REQ NTSTATUSUPDATE		276
MGMSG PZ GET NTSTATUSUPDATE		276
MGMSG PZ ACK NTSTATUSUPDATE		280
MGMSG NT SET EEPROMPARAMS		290
MGMSG NT SET TNA DISPSETTINGS MGMSG NT REQ TNA DISPSETTINGS		291
MGMSG NT REQ TNA DISPSETTINGS MGMSG NT GET TNA DISPSETTINGS		291 291
	UXU/EA	791

Messages Applicable to BNT001, MNA601, TNA001 and KNA101

MGMSG NT SET TNA IOSETTINGS	<u>0x07EB</u>	292
MGMSG NT REQ TNA IOSETTINGS	<u>0x07EC</u>	292
MGMSG_NT_GET_TNA_IOSETTINGS	0x07ED	292

Messages Applicable to KNA101 Only

MGMSG HW SET KCUBEMMILOCK 0x0250	59
MGMSG_RESTOREFACTORYSETTINGS 0x0686	60
MGMSG KNA SET NTTIALPFILTERCOEFFS 0x0687	281
MGMSG_KNA_REQ_NTTIALPFILTERCOEFFS 0x0688	281
MGMSG KNA GET NTTIALPFILTERCOEFFS 0x0689	281
MGMSG KNA REQ XYSCAN 0x06A0	288
MGMSG_KNA_GET_XYSCAN 0x06A1	288
MGMSG KNA STOP XYSCAN 0x06A2	288
MGMSG_KNA_SET_KCUBEMMIPARAMS 0x068A	283
MGMSG KNA REQ KCUBEMMIPARAMS 0x068B	283
MGMSG_KNA_GET_KCUBEMMIPARAMS 0x068C	283
MGMSG KNA SET KCUBETRIGIOCONFIG 0x068D	285
MGMSG KNA REQ KCUBETRIGIOCONFIG 0x068E	285
MGMSG_KNA_GET_KCUBETRIGIOCONFIG 0x068F	285

Messages Applicable to TLS001 and KLSxxx

MGMSG_MOD_IDENTIFY	<u>0x0223</u>	46
MGMSG HW DISCONNECT	0x0002	49
MGMSG HW START UPDATEMSGS	0x0011	51
MGMSG HW STOP UPDATEMSGS	0x0012	51
MGMSG HW REQ INFO	0x0005	52
MGMSG_HW_GET_INFO	0x0006	52
MGMSG LA SET PARAMS	0x0800	296
MGMSG_LA_REQ_PARAMS	0x0801	296
MGMSG LA GET PARAMS	0x0802	296
MGMSG LA ENABLEOUTPUT	0x0811	311
MGMSG_LA_DISABLEOUTPUT	0x0812	311
MGMSG LA SET EEPROMPARAMS	0x0810	308
MGMSG_LA_REQ_STATUSUPDATE	<u>0x0820</u>	313
MGMSG LA GET STATUSUPDATE	0x0821	318
MGMSG_LA_ACK_STATUSUPDATE	0x0822	320

Messages Applicable Only to KLS635 and KLS1550

MGMSG HW SET KCUBEMMILOCK 0x0	0 <u>250</u> 59
MGMSG_RESTOREFACTORYSETTINGSOXC	0 <u>686</u> 60
MGMSG LA SET KCUBETRIGIOCONFIG 0x0	82A 320
MGMSG LA REQ KCUBETRIGIOCONFIG 0x0	<u>82B</u> 320
MGMSG LA GET KCUBETRIGIOCONFIG 0x0	<u>82C</u> 320

Messages Applicable to TLD001 and KLD101

MGMSG MOD IDENTIFY	0x0223	46
MGMSG_HW_DISCONNECT	0x0002	49
MGMSG HW START UPDATEMSGS	0x0011	51
MGMSG HW STOP UPDATEMSGS	0x0012	51
MGMSG HW REQ INFO	0x0005	52
MGMSG HW GET INFO	0x0006	52
MGMSG_LA_SET_PARAMS	<u>0x0800</u>	296
MGMSG LA REQ PARAMS	0x0801	296
MGMSG_LA_GET_PARAMS	0x0802	296
MGMSG LA SET EEPROMPARAMS	0x0810	308
MGMSG LA ENABLEOUTPUT	0x0811	311
MGMSG_LA_DISABLEOUTPUT	0x0812	311
MGMSG LD OPENLOOP	0x0813	312
MGMSG_LD_CLOSEDLOOP	0x0814	312
MGMSG LD POTROTATING	0X0815	313
MGMSG_LD_MAXCURRENTADJUST	0X0816	314
MGMSG LD SET MAXCURRENTDIGPOT	0x0817	315
MGMSG LD REQ MAXCURRENTDIGPOT	0x0818	315
MGMSG_LD_GET_MAXCURRENTDIGPOT	0x0819	315
MGMSG LD FINDTIAGAIN	0x081A	316
MGMSG_LD_TIAGAINADJUST	0x081B	317
MGMSG LD REQ STATUSUPDATE	0x0825	320
MGMSG LD GET STATUSUPDATE	0x0826	321
MGMSG LD ACK STATUSUPDATE	0x0827	323

Messages Applicable Only to KLD101

MGMSG HW SET KCUBEMMILOCK	0x0250	59
MGMSG_RESTOREFACTORYSETTINGS	0x0686	60

Messages Applicable to TQD001, TPA101 and KPA101

MGMSG_MOD_IDENTIFY 0x02	<u>23</u> 46
MGMSG HW DISCONNECT 0x00	<mark>02</mark> 49
MGMSG_HW_START_UPDATEMSGS 0x00	<u>11</u> 51
MGMSG HW STOP UPDATEMSGS 0x00	<u>12</u> 51
MGMSG HW REQ INFO 0x00	<u>05</u> 52
MGMSG_HW_GET_INFO 0x00	<u>06</u> 52
MGMSG QUAD SET PARAMS 0x08	<u>70</u> 328
MGMSG_QUAD_REQ_PARAMS0x08	<u>71</u> 328
MGMSG QUAD GET PARAMS 0x08	<mark>72</mark> 328

QUAD_PARAM Sub-Messages

Set/Request/Get Quad_LoopParams (sub-message ID = 01)
<u>Request/Get Quad_Readings (sub-message ID = 03)</u>
Set/Request/Get Quad Position Demand Params (sub-message ID = 05)
<u>Set/Request/Get Quad Operating Mode (sub-message ID = 07)</u>
<u>Request/Get Quad Status Bits (sub-message ID = 09)</u>
<u>Set/Request/Get Quad Display Settings (sub-message ID = 0B)</u>
<u>Set/Request/Get Quad Position Demand Outputs (sub-message ID = 0D)</u>

MGMSG_QUAD_REQ_STATUSUPDATE0x088	0 342
MGMSG_QUAD_GET_STATUSUPDATE0x088	<u>1</u> 351
MGMSG_QUAD_SET_EEPROMPARAMS0x087	<u>5</u> 353

Messages Applicable to TPA101 and KPA101 Only

QUAD_PARAM Sub-Messages

Set/Request/Get Quad LoopParams2 (sub-message ID = 0E)

MGMSG QUAD ACK STATUSUPDATE

0x0882 351

Messages Applicable to KPA101 Only

QUAD_PARAM Sub-Messages

<u>Set/Request/Get Quad_KPATrigIOConfig (sub-message ID = 0F)</u> Set/Request/Get Quad_KPADigOPs (sub-message ID = 10)

Messages Applicable to TTC001

MGMSG_MOD_IDENTIFY 0x0223	46
MGMSG HW DISCONNECT 0x0002	49
MGMSG HW START UPDATEMSGS 0x0011	51
MGMSG HW STOP UPDATEMSGS 0x0012	51
MGMSG HW REQ INFO 0x0005	52
MGMSG_HW_GET_INFO 0x0006	52
MGMSG TEC SET PARAMS 0x0840	355
MGMSG_TEC_REQ_PARAMS 0x0841	355
MGMSG TEC GET PARAMS 0x0842	355

TEC_PARAM Sub-Messages

<pre>Set/Request/Get TEC_TempSetPoint (sub-message ID = 01)</pre>
<u>Request/Get_TEC_Readings (sub-message ID = 03)</u>
<u>Set/Request/Get_IOSettings (sub-message ID = 05)</u>
<u>Request/Get_TEC_StatusBits (sub-message ID = 07)</u>
<u>Set/Request/Get_TEC_LoopParams (sub-message ID = 09)</u>
<pre>Set/Request/Get TEC_Disp_Settings (sub-message ID = 0B)</pre>

MGMSG_TEC_SET_EEPROMPARAMS	0x0850	366
MGMSG_TEC_REQ_STATUSUPDATE	<u>0x0860</u>	367
MGMSG_TEC_ACK_STATUSUPDATE	0x0862	368

Messages Applicable to TIM101 and KIM101

MGMSG MOD IDENTIFY	0x0223	46
MGMSG MOD SET CHANENABLESTATE	0x0210	47
MGMSG MOD REQ CHANENABLESTATE	0x0211	47
MGMSG MOD GET CHANENABLESTATE	0x0212	47
MGMSG HW DISCONNECT	0x0002	49
MGMSG HW RESPONSE	0x0080	49
MGMSG HW RICHRESPONSE	0x0081	50
MGMSG HW START UPDATEMSGS	0x0011	51
MGMSG HW STOP UPDATEMSGS	0x0012	51
MGMSG HW REQ INFO	0x0005	52
MGMSG HW GET INFO	0x0006	52
MGMSG HUB REQ BAYUSED	0x0065	55
MGMSG HUB GET BAYUSED	0x0066	55
MGMSG MOT MOVE STOP	0x0465	88
MGMSG MOT SET EEPROMPARAMS:	0x04B9	102
MGMSG MOT GET STATUSUPDATE	0x0481	122
MGMSG PZMOT SET PARAMS	0x08C0	371
MGMSG PZMOT REQ PARAMS	0x08C1	371
MGMSG_PZMOT_GET_PARAMS	0x08C2	371

PZMOT_PARAM Sub-Messages Applicable to TIM101

SetRequest/Get_PZMOT_PosCounters (sub-message ID = 05) SetRequest/Get_PZMOT_DriveParameters (sub-message ID = 07) Set/Request/Get_TIM_JogParameters (sub-message ID = 09) Set/Request/Get_TIM_PotParameters (sub-message ID = 11) Set/Request/Get_TIM_ButtonParameters (sub-message ID = 13)

PZMOT_PARAM Sub-Messages Applicable to KIM101

SetRequest/Get PZMOT PosCounters (sub-message ID = 05)
SetRequest/Get PZMOT DriveParameters (sub-message ID = 07)
Set/Request/Get_PZMOT_LimitSwitchParams (sub-message ID = 0B)
Request/Get PZMOT HomeParams (sub-message ID = 0F)
Set/Request/Get PZMOT KCubeMMIParams (sub-message ID = 15)
Set/Request/Get_PZMOT_TriglOConfig (sub-message ID = 17)
Set/Request/Get_PZMOT_TrigParams (sub-message ID = 19)
Set/Request/Get_PZMOT_ChanEnableMode (sub-message ID = 2B)
Set/Request/Get PZMOT KCubeJogParams (sub-message ID = 2D)
Set/Request/Get PZMOT KCubeFeedbackSigParams (sub-message ID = 30)
Set/Request/Get PZMOT KCubeMoveRelativeParams (sub-message ID = 32)
Set/Request/Get_PZMOT_KCubeMoveAbsoluteParams (sub-message ID = 34)

MGMSG_PZMOT_MOVE_ABSOLUTE	0x04D8	417
MGMSG PZMOT MOVE COMPLETED	0x08D6	418
MGMSG_PZMOT_MOVE_JOG	0x08D9	419
MGMSG PZMOT GET STATUSUPDATE	0x08E1	420

Messages Applicable to MPC220 and MPC320

MGMSG_MOD_IDENTIFY	<u>0x0223</u>	46
MGMSG MOD SET CHANENABLESTATE	0x0210	47
MGMSG MOD REQ CHANENABLESTATE	<u>0x0211</u>	47
MGMSG MOD GET CHANENABLESTATE	0x0212	47
MGMSG HW DISCONNECT	0x0002	49
MGMSG HW START UPDATEMSGS	0x0011	51
MGMSG HW STOP UPDATEMSGS	0x0012	51
MGMSG HW REQ INFO	0x0005	52
MGMSG HW GET INFO	0x0006	52
MGMSG MOT MOVE HOME	0x0443	80
MGMSG MOT MOVE HOMED	0x0444	80
MGMSG MOT MOVE COMPLETED	0x0464	83
MGMSG MOT MOVE ABSOLUTE	0x0453	84
MGMSG MOT MOVE JOG	0x046A	86
MGMSG MOT MOVE STOP	0x0465	88
MGMSG MOT MOVE STOPPED	0x0466	89
MGMSG MOT SET EEPROMPARAMS	0x04B9	102
MGMSG MOT GET DCSTATUSUPDATE	0x0491	125
MGMSG MOT REQ UPSTATUSUPDATE	0x0490	130
MGMSG POL SET PARAMS	0x0530	423
MGMSG POL REQ PARAMS	0x0531	423
MGMSG POL GET PARAMS	0x0532	423

Messages Applicable to CT1P

MGMSG MOD IDENTIFY	0x0223	46
MGMSG_MOD_IDENTITY	0x0220	47
MGMSG MOD REQ CHANENABLESTATE	0x0211	47
MGMSG MOD GET CHANENABLESTATE	0x0212	47
MGMSG HW DISCONNECT	0x0002	49
MGMSG HW RICHRESPONSE	0x0081	50
MGMSG HW START UPDATEMSGS	0x0011	51
MGMSG HW STOP UPDATEMSGS	0x0012	51
MGMSG HW REQ INFO	0x0005	52
MGMSG HW GET INFO	0x0006	52
MGMSG_MOD_SET_DIGOUTPUTS	<u>0x0213</u>	58
MGMSG MOD REQ DIGOUTPUTS	<u>0x0214</u>	58
MGMSG_MOD_GET_DIGOUTPUTS	<u>0x0215</u>	58
MGMSG HW SET KCUBEMMILOCK	0x0250	59
MGMSG_HW_REQ_KCUBEMMILOCK	<u>0x0251</u>	59
MGMSG HW GET KCUBEMMILOCK	0x0252	59
MGMSG PZ SET POSCONTROLMODE	0x0640	195
MGMSG_PZ_REQ_POSCONTROLMODE	<u>0x0641</u>	195
MGMSG PZ GET POSCONTROLMODE	0x0642	195
MGMSG_PZ_SET_OUTPUTVOLTS	0x0643	198
MGMSG PZ REQ OUTPUTVOLTS	0x0644	198
MGMSG PZ GET OUTPUTVOLTS	0x0645	198
MGMSG PZ REQ OUTPUTPOS	0x0647	199
MGMSG PZ GET OUTPUTPOS	0x0648	199
MGMSG_PZ_REQ_PZSTATUSBITS	<u>0x065B</u>	203
MGMSG PZ GET PZSTATUSBITS	0x065C	203
MGMSG_PZ_REQ_PZSTATUSUPDATE	<u>0x0661</u>	205
MGMSG PZ GET PZSTATUSUPDATE	<u>0x0661</u>	205
MGMSG PZ ACK PZSTATUSUPDATE	0x0662	207
MGMSG_PZ_SET_PPC_PIDCONSTS	0x0690	208
MGMSG PZ REQ PPC PIDCONSTS	0x0691	208
MGMSG_PZ_GET_PPC_PIDCONSTS	0x0692	208
MGMSG PZ SET PPC IOSETTINGS	0x0696	212
MGMSG_PZ_REQ_PPC_IOSETTINGS	<u>0x0697</u>	212
MGMSG PZ GET PPC IOSETTINGS	0x0698	212
MGMSG PZ SET EEPROMPARAMS:	0x07D0	222
MGMSG PZ SET ZERO	0x0658	226
MGMSG PZ REQ MAXTRAVEL	<u>0x0650</u>	227
MGMSG_PZ_GET_MAXTRAVEL	<u>0x0651</u>	227
MGMSG KPZ SET KCUBEMMIPARAMS	0x07F0	235
MGMSG_KPZ_REQ_KCUBEMMIPARAMS	0x07F1	235
MGMSG KPZ GET KCUBEMMIPARAMS	0x07F2	235
MGMSG KSG SET KCUBETRIGIOCONFIG	0x07F9	245
MGMSG KSG REQ KCUBETRIGIOCONFIG	0x07FA	245
MGMSG KSG GET KCUBETRIGIOCONFIG	0x07FB	245
MGMSG_PZ_REQ_PIDCRITERIA	0x0699	426
MGMSG PZ GET PIDCRITERIA	0x069A	426
MGMSG_PZ_SET_PIDCRITERIA	<u>0x069B</u>	426

Introduction

1. Purpose and Scope

This document describes the low-level communications protocol and commands used between the host PC and controller units within the Thorlabs Motion Control family. The information contained in this document is intended to help third party system developers to write their own applications to interface to the Thorlabs range of controllers without the constraints of using a particular operating system or hardware platform. The commands described here are those which are necessary to control movement; there is an additional set of commands, used for calibration or test, which will not be detailed as these are not required for the external system developer.

2. Electrical interface

The Thorlabs family of controllers provides a USB and an RS-232 interface to communicate with the host PC. The communications protocol is identical in both cases but developers wishing to use the USB interface should be aware of the USB enumeration scheme used in the system.

2.1 USB Interface

The electrical interface within the Thorlabs controllers uses a Future Technology Devices International (FTDI), type FT232BM USB peripheral chip to communicate with the host PC. This is a USB2.0 compliant USB1.1 device. This USB interfacing chip provides a serial port interface to the embedded system (i.e., Thorlabs controller) and USB interface to the host control PC. While the overall communications protocol is independent of the transport layer (for example, Ethernet or serial communications could also be used to carry commands from the host to the controller), the initial enumeration scheme described below is specific to the USB environment.

FTDI supply device drivers and interfacing libraries (for Windows, Linux, and other platforms) used to access the USB chip. Before any PC USB communication can be established with an Thorlabs controller, the client program is required to set up the necessary FTDI chip serial port settings used to communicate to the Thorlabs controller embedded system. Within the Thorlabs software itself the following FTDI library calls are made to set up the USB chip serial port for each Thorlabs USB device enumerated on the bus.

// Set baud rate to 115200.

ftStatus = FT_SetBaudRate(m_hFTDevice, (ULONG)uBaudRate);

// 8 data bits, 1 stop bit, no parity
ftStatus = FT_SetDataCharacteristics(m_hFTDevice, FT_BITS_8, FT_STOP_BITS_1,
FT_PARITY_NONE);

// Pre purge dwell 50ms.
Sleep(uPrePurgeDwell);

// Purge the device.
ftStatus = FT_Purge(m_hFTDevice, FT_PURGE_RX | FT_PURGE_TX);

// Post purge dwell 50ms.
Sleep(uPostPurgeDwell);

// Reset device.

ftStatus = FT_ResetDevice(m_hFTDevice);

// Set flow control to RTS/CTS.
ftStatus = FT_SetFlowControl(m_hFTDevice, FT_FLOW_RTS_CTS, 0, 0);

// Set RTS.

ftStatus = FT_SetRts(m_hFTDevice);

2.2 USB Device Enumeration

The Thorlabs Server PC software supplied is designed to work with a number of different types of controllers. The purpose of the enumeration phase is for the host to establish what devices are present in the system and initialise the GUI accordingly. Initially this is done by enumerating the USB devices connected to the system and reading the serial number information contained in the USB device descriptor.

For the Thorlabs range of controllers, this serial number is an 8-digit decimal number. The first two digits (referred to as the prefix) describe the type of controller, while the rest of the digits make up a unique serial number. By extracting the prefix, the host can therefore establish what type of hardware is connected to the system.

In most cases, specifically with benchtop controllers, the USB serial number contains sufficient information for the host to know the exact type of hardware is connected. There is a range of other controller products where several controller cards (without their own individual USB peripheral chip) can be plugged into a motherboard and it is only the motherboard that has USB connectivity. These are generally referred to as a card slot (or bay) type of system (for example, the BSC103 controller). In these systems, a second enumeration state is carried out; however, this second state is done within the protocol framework that will be detailed in this document.

The USB prefixes for some of our controllers are given below. For details on the prefix for a specific controller, please see the associated product handbook available from our website or contact your local tech support.

USB S/N	Type of product	Thorlabs code
20xxxxxx	Legacy single channel benchtop stepper driver	BSC001
21xxxxxx	Legacy single channel benchtop piezo driver	BPC001
22xxxxxx	Benchtop NanoTrak	BNT001
25xxxxxx	Legacy single channel mini stepper driver	BMS001
26xxxxxx	K-Cube stepper driver	KST101
27xxxxxx	K-Cube brushed DC servo driver	KDCT101
28xxxxxx	K-Cube brushless DC servo driver	KBD101
29xxxxxx	K-Cube piezo driver	KPZ101
30xxxxxx	Legacy dual channel stepper driver	BSC002
31xxxxxx	Legacy dual channel benchtop piezo driver	BPC002
33xxxxxx	Single channel benchtop DC servo driver to 200	6 BDC101
35xxxxxx	Legacy dual channel mini stepper driver	BMS002
37xxxxxx	Motorized filter flipper	MFF10X
40xxxxxx	Single channel stepper driver	BSC101
41xxxxxx	Single channel piezo driver	BPC101

42	Circle shares have been DC some drives from 2007	DDC101
43xxxxxx	Single channel benchtop DC servo driver from 2007	BDC101
44xxxxxx	Single channel precision piezo driver	PPC001
45xxxxx	LTS series integrated long travel stepper stages	LTS150/LTS300
48xxxxxx	MMR series Midi Rack bay serial number prefix	
49xxxxxx		D/MLJ150/MLJ250
50xxxxxx	Midi Rack stepper module	MST601/MST602
51xxxxxx	Midi Rack piezo module	MPZ601
52xxxxxx	Midi Rack NanoTrak module Thorlabs APT Midi Rack Brushless Module	MNA601/IR
54xxxxxx		MBD602
55xxxxxx	Integrated stepper driven rotation stage K-Cube Laser Source	K10CR1
56xxxxxx		KLS101
57xxxxxx	K-Cube NanoTrak	KNA101
59xxxxxx	K-Cube Strain Gauge Reader	KSG101
60xxxxxx	OptoSTDriver (mini stepper driver)	OST001
63xxxxx	OptoDCDriver (mini DC servo driver)	ODC001
64xxxxxx	T-Cube Laser Driver	TLD001
65xxxxxx	T-Cube Inertial Piezo Driver T-Cube brushless DC servo Driver	TIM001
67xxxxx		TBD001
68xxxxx	K-Cube solenoid Driver	KSC101
69xxxxxx	K-Cube position aligner	KPA101
70xxxxxx	Three channel card slot stepper driver	BSC103/BSC203
71xxxxxx	Three channel card slot piezo driver	BPC103/203/303
72xxxxx	Three channel card slot piezo/stepper driver	BPS103
73xxxxx	Three channel card slot brushless DC driver	BBD103
80xxxxxx	Stepper Driver T-Cube	TST001
81xxxxxx	Piezo Driver T-Cube	TPZ001
82xxxxxx	NanoTrak T-Cube	TNA001
83xxxxx	DC Driver T-Cube	TDC001
84xxxxxx	Strain Gauge Reader T-Cube Solenoid Driver T-Cube	TSG001
85xxxxx		TSC001
86xxxxx	T-Cube Laser Source	TLS001
87xxxxx	T-Cube TEC driver	TTC001
89xxxxx	T-Cube Quad Detector	TQD001
90xxxxx	Single channel stepper motor driver card	SCC101
91xxxxxx	Single channel piezo driver card	PCC101
93xxxxx	Single channel DC servo driver card	DCC101
94xxxxxx	Brushless DC motor card	BCC101
95xxxxxx	2-Channel precision piezo controller	PPC102
96xxxxxx	2-Channel Precision piezo controller card	PCC102
97xxxxx	Thorlabs Kinesis K-Cube Inertial Motor Controller	KIM101
98xxxxxx	Thorlabs Kinesis K-Cube Laser Diode Controller	KLD101
101xxxxx	Thorlabs Slim Integrated XY Motor Stage	M30XY
102xxxxx	Thorlabs Air Quality Monitor	AQM001
103xxxxx	Thorlabs Benchtop Brushless DC Servo Motor Controlle	r BBD30X
104xxxxx	Thorlabs Benchtop Brushless DC Servo Motor	DDDDDV
105,000	Virtual Controller Card	BBD30X
105xxxxx	Thorlabs Slim Integrated X Motor Stage	M30X
106xxxxx	Thorlabs Slim Integrated Motor Stage	MOOVV
107,000	Virtual Controller Card	M30XY
107xxxxx	Thorlabs BBD Ethernet Controller Card	ETH001
108xxxxx	Thorlabs BBD Front Panel Controller Card	FP001

109xxxxx 110xxxxx	Thorlabs Kinesis K-Cube Voice Coil Controller Thorlabs Motorized Science Desk	KVC101 SDAM7590
TIONNAN	monabs motorized science besk	SDPM7590
111xxxxx	Thorlabs Manual Linear Encoder	ENC
112xxxxx	Thorlabs Piezo Stage Controller	PDXC2
113xxxxx	Thorlabs K-Cube Piezo Controller and Strain Gauge	
	Reader	KPC101
114xxxxx	Thorlabs 2-Axis Joystick	MJC002

2.3 RS-232 Interface

The RS-232 interface uses the 9-way D-Type male connector on the rear panel, marked 'INTERCONNECT'. Communications parameters are fixed at:

- 115200 bits/sec
- 8 data bits, 1 stop bit
- No parity
- RTS/CTS Handshake

By nature, the RS-232 interface provides point-to-point communications, and therefore there is no device enumeration as there is with USB based communications.

3. Overview of the Communications Protocol

The communications protocol used in the Thorlabs controllers is based on the message structure that always starts with a fixed length, 6-byte *message header* which, in some cases, is followed by a variable length *data packet*. For simple commands, the 6-byte message header is sufficient to convey the entire command. For more complex commands, for example, when a set of parameters needs to be passed on, the 6-byte header is not enough and in this case the header is followed by the data packet.

The header part of the message always contains information that indicates whether a data packet follows the header and if so, the number of bytes that the data packet contains. In this way the receiving process can keep tracks of the beginning and the end of messages.

Note that in the section below describing the various byte sequences, the C-type of notation will be used for hexadecimal values (e.g., 0x55 means 55 hexadecimal) and logical operators (e.g., | means logic bitwise OR). Values that are longer than a byte follow the Intel little-endian format.

4. Description of the message header

Byte:	byte 0	byte 1	byte 2	byte 3	byte 4	byte 5
Meaning if no data packet to follow	message	ID	param1	param2	dest	source
Meaning if data packet to follow	message	ID	data pack	et length	dest 0x80	source

The 6 bytes in the message header are shown below:

The meaning of some of the fields depends on whether the message is followed by a data packet or not. This is indicated by the most significant bit in byte 4, called the destination byte, therefore the receiving process must first check if the MSB of byte 4 is set.

If this bit is not set, then the message is a header-only message, and the interpretation of the bytes is as follows:

message ID:	describes what the action the message requests.
param1:	first parameter (if the command requires a parameter, otherwise 0).
param2:	second parameter (if the command requires a parameter, otherwise 0).
dest:	the destination module.
source:	the source of the message.

The meaning of the source and destination bytes will be detailed later. If the MSB of byte 4 is set, then the message will be followed by a data packet and the interpretation of the header is the following:

message ID:	describes what the action the message requests.
datapacket length:	number of bytes to follow header.
	Note: although this is a 2-byte long field, currently no datapacket
	exceeds 255 bytes in length.
dest: 0x80	the destination module logic OR'd with 0x80 (noted by d)
source:	the source of the data.

The source and destination fields require some further explanation. In general, as the name suggests, they are used to indicate the source and destination of the message. In non-card-slot type of systems the source and destination of messages is always unambiguous, as each module appears as a separate USB node in the system. In these systems, when the host sends a message to the module, it uses the source identification byte of 0x01 (meaning host) and the destination byte of 0x50 (meaning "generic USB unit"). (In messages that the module sends back to the host, the content of the source and destination bytes is swapped.)

In card-slot (bay) type of systems, there is only one USB node for several sub-modules, so this simple scheme cannot be used. Instead, the host sends a message to the motherboard that the sub-modules are plugged into, with the destination field of each message indicating which *slot* the message must be routed to. Likewise, when the host receives a message from a particular sub-module, it knows from the source byte which slot is the origin of the message – see Fig below.

Numerically, the following values are currently used for the source and destination bytes:

0x01	Host controller (i.e., control PC)
0x11	Rack controller, motherboard in a card slot system or
	comms router board
0x21	Bay 0 in a card slot system
0x22	Bay 1 in a card slot system
0x23	etc.
0x24	etc.
0x25	etc.
0x26	etc.
0x2A	Bay 9 in a card slot system
0x50	Generic USB hardware unit

In slot-type systems the host can also send messages to the motherboard that the submodules are plugged into (destination byte = 0x11). In fact, as a very first step in the communications process, the host must send a message to the motherboard to find out which slots are used in the system.

Note that although in theory this scheme would allow communication between individual sub-modules (the source of the message could be a sub-module and the destination another one), current systems do not use this option.
5. General message exchange rules

The type of messages used in the communications exchange between the host and the submodules can be divided into 4 general categories:

(a) Host issues a command, sub-module carries out the command without acknowledgement (i.e., no response is sent back to the host).

Typically, these are commands which require no information from the sub-module, for example setting the digital outputs to a particular state.

(b) Host issues a command (message request) and the sub-module responds by sending data back to the host.

For example, the host may request the sub-module to report the state of the digital inputs.

(c) Following a command from the host, the sub-module periodically sends a message to the host without further prompting.

These messages are referred to as *status update messages*. These are typically sent automatically every 100 msec from the sub-module to the host, showing, amongst other things, the position of the stage the controller is connected to. The meters on the Thorlabs User GUI rely on these messages to show the up-to-date status of the stage.

(d) Rarely – error messages, exceptions. These are spontaneously issued by the sub-module if some error occurs. For example, if the power supply fails in the sub-module, a message is sent to the host PC to inform the user.

Apart from the last two categories (status update messages and error messages), in general the message exchanges follow the SET -> REQUEST -> GET pattern, i.e., for most commands a trio of messages are defined. The SET part of the trio is used by the host (or, sometimes in card-slot systems the motherboard) to set some parameter or other. If then the host requires some information from the sub-module, then it may send a REQUEST for this information, and the sub-module responds with the GET part of the command. Obviously, there are cases when this general scheme does not apply, and some part of this SET->REQUEST->GET scheme will be used throughout.

Note that, as the scheme suggests, this is a master-slave type of system, so sub-modules never send SET and REQUEST messages to the host and GET messages are always sent to the host as a destination.

In all messages, where a parameter is longer than a single character, the bytes are encoded in the Intel format, least significant byte first.

6. Format Specifiers

format	encoding
word	Unsigned 16- bit integer (2 bytes) in the Intel (little-endian) format
	for example, decimal 12345 (3039H) is encoded as the byte sequence 39, 30
short	Signed 16-bit integer (2 bytes) in 2's compliment format for example,
	decimal -1 is encoded as the byte sequence FF, FF
dword	Unsigned 32-bit integer (4 bytes) in the Intel (little-endian) format
	for example, decimal 123456789 (75BCD15H) is encoded as the byte
	sequence 15, CD, 5B, 07
long	Signed 32-bit integer (4 bytes) in 2's compliment format for example,
	decimal -1 is encoded as the byte sequence FF, FF
	4 bytes in the Intel (little-endian) format for example, decimal -123456789
	(FFFFFFFF8A432EBH) is encoded as the byte sequence EB, 32, A4, F8,
char	1 byte (2 digits)
char[N]	string of N characters

7. Single Precision Floating Point Format

Single-precision floating-point format is a computer number format that occupies 4 bytes (32 bits) in computer memory and represents a wide dynamic range of values by using a floating point.

Where message parameters use floating point variables, the system uses the IEEE 754 standard.

8. Conversion between position, velocity and acceleration values in standard physical units and their equivalent Thorlabs Software parameters.

To convert between the position and encoder counters in the stage being driven, and realworld units, (e.g. mm) the system uses certain conversion (scaling) factors. These conversion factors differ depending on the stage being driven and the controller being used.

Background

The principle described below is the same for all Thorlabs motion stepper and brushed or brushless DC controllers and stages, but the individual distance and time conversion factors will be typically different for each stage and/or controller.

In real life, the physical units needed to describe position, velocity and acceleration are related to position and time measurement units (millimetres/degrees and seconds). In motion controllers, however, normally the system only knows the distance travelled in encoder counts (pulses) as measured by an encoder fitted to the motor shaft. In most cases the motor shaft rotation is also scaled down further by a gearbox and a leadscrew. In any case, the result is a scaling factor between encoder counts and position. The value of this scaling factor depends on the stage. In the section below this scaling factor will be represented by the symbol EncCnt.

Time is related to the sampling interval of the system, and as a result, it depends on the motion controller. Therefore, this value is the same for all stages driven by a particular controller. In the sections below the sampling interval will be denoted by T.

The sections below describe the position, velocity, and acceleration scaling factors for all the controllers and stages that are used with these controllers. The symbols POS_{APT} , VEL_{APT} and ACC_{APT} are used to denote the position, velocity and acceleration values used in Thorlabs commands, whereas the symbols Pos, Vel and Acc denote physical position, velocity and acceleration values in mm, mm/sec and mm/sec² units for linear stages and degree, degree/sec and degree/sec² for rotational stages.

As Thorlabs parameters are integer values, the Thorlabs values calculated from the equations need to be rounded to the nearest integer.

Brushed DC Controller (TDC001, KDC101, KVS30) driven stages.

Mathematically: $POS_{APT} = EncCnt \times Pos$ $VEL_{APT} = EncCnt \times T \times 65536 \times Vel$ $ACC_{APT} = EncCnt \times T^2 \times 65536 \times Acc$ where T = 2048 / (6 × 10⁶)

The value of EncCnt and the resulting conversion factors are listed below for each stage:

Stage	EncCnt per mm	Scaling Factor		
	or EncCnt per °	Velocity	Acceleration	
MTS25-Z8	34554.96	772981.3692 (mm/s)	263.8443072 (mm/s ²)	
MTS50-Z8	34554.96	772981.3692 (mm/s)	263.8443072 (mm/s ²)	
Z8xx	34554.96	772981.3692 (mm/s)	263.8443072 (mm/s ²)	
Z6xx	24600	550292.68 (mm/s)	187.83 (mm/s²)	
PRM1-Z8	1919.6418578623391	42941.66 (°/s)	14.66 (°/s²)	
PRMTZ8	1919.6418578623391	42941.66 (°/s)	14.66 (°/s²)	
CR1-Z7	12288	36650.0	95.276	
KVS30	20,000	447392.43 (mm/s)	152.71 (mm/s²)	

Brushless DC Controller (TBD001, KBD101, BBD10X and BBD20X) driven stages.

$$\label{eq:posterior} \begin{split} & \text{Mathematically:} \\ & \text{POS}_{\text{APT}} = \text{EncCnt} \times \text{Pos} \\ & \text{VEL}_{\text{APT}} = \text{EncCnt} \times \text{T} \times 65536 \times \text{Vel} \\ & \text{ACC}_{\text{APT}} = \text{EncCnt} \times \text{T}^2 \times 65536 \times \text{Acc} \\ & \text{where } \text{T} = 102.4 \times 10^{-6} \end{split}$$

Linear Stages

The value of EncCnt and the resulting conversion factors are listed below for each stage:

Stage	EncCnt per mm	Scaling Factor	
		Velocity (mm/s)	Acceleration (mm/s ²)
DDSM50	2000	13421.77	1.374
DDSM100	2000	13421.77	1.374
DDS220	20000	134217.73	13.744
DDS300	20000	134217.73	13.744
DDS600	20000	134217.73	13.744
MLS203	20000	134217.73	13.744

Rotary Stages

The value of EncCnt and the resulting conversion factors are listed below for each stage:

Stage	EncCnt per 360°		Scaling Factor	0
		EncCnt per °	Velocity (°/s)	Acceleration (°/s ²)
DDR100	3276800	9102.22	61083.98	6.255
DDR05	2000000	5555.55	37282.7	3.81775
DDR25	1440000	4000	26843.5	2.74878

Stepper Motor Controller (TST001, BSC00x, BSC10x, and MST601) Driven Stages

For these stepper controllers the server sends absolute micro-steps to the controllers. Depending on the stage and the stepper motor concerned there are different micro step values required to move either a linear distance in millimetres or a rotational distance in degrees.

In general, for 200 full step motors (most of our motors) the above range of stepper controllers is designed to insert 128 micro steps for every full step of the stepper. So, for a 200 full step motor the number of micro steps per full turn is defined as follows:

Full turn micro steps = Motor full steps per turn x Number of Micro steps per full step

For a 200 full step motor this is given by: <u>Full turn micro steps = 200 x 128 = 25600</u>

However, the ZST and ZFS range of actuators have 24 full steps per revolution and furthermore, both motors are fitted with a gearbox. The ZST has a ratio 40.866:1, while the ZFS has a ratio 400:9.

So, for the ZST series, a 1mm move requires $24 \times 128 \times 40.866 = 125540.35 \mu$ steps, while for the ZFS series, a 1mm move requires $24 \times 128 \times 400/9 = 136533.33 \mu$ steps.

Each stage can either be a direct drive or driven through a gear box. The table below indicates the relationship between absolute micro steps and a positional output in millimetres or degrees.

Stage	Gearing	Position	Micro Step Values			
			Position(µs)	Velocity(µs/sec)	Acceleration(µs/sec ²)	
ZST Series	0.0245 mm/turn	1mm	125540.35	125540.35	125540.35	
ZFS Series	0.0225 mm/turn	1 mm	136533.33	136533.33	136533.33	
DRV001	0.5mm/turn	1mm	51200	51200	51200	
DRV013	1mm/turn	1mm	25600	25600	25600	
DRV014	1mm/turn	1mm	25600	25600	25600	
NRT100	1mm/turn	1mm	25600	25600	25600	
NRT150	1mm/turn	1mm	25600	25600	25600	
LTS150	1mm/turn	1mm	25600	25600	25600	
LTS300	1mm/turn	1mm	25600	25600	25600	
DRV113	1.25mm/turn	1mm	20480	20480	20480	
DRV114	1.25mm/turn	1mm	20480	20480	20480	
FW103*	No gear	0.998deg	71	71	71	
NR360**	5.4546deg/turn	0.999deg	4693	4693	4693	

This table is relevant for the range of controllers listed above. Note that micro step values are for a position of 1mm, a velocity of 1mm/sec and an acceleration of 1mm/sec/sec

*Note that there is no exact value of micro steps to get to exactly 1 degree this is because 1 turn represents 360 degrees which is 25600 micro steps. So actual resolution is 360/25600 = 0.0140625 degrees per micro step.

**Note that there is no exact value of micro steps to get to exactly 1 degree this is because 1 turn represents 5.4546 degrees which is 25600 micro steps. So actual resolution is 5.4546/25600 = 0.0002131 degrees

Stepper Motor Controller (TST101, KST101, BSC20x, MST602, K10CR1) Driven Stages

The latest stepper controllers include a Trinamics encoder with a resolution of 2048 microsteps per full step, giving 409600 micro-steps per revolution for a 200 step-motor. However, the ZST and ZFS range of actuators have 24 full steps per revolution and furthermore, both motors are fitted with a gearbox. The ZST has a ratio 40.866:1, while the ZFS has a ratio 400:9.

So, for the ZST series, a 1mm move requires $24 \times 2048 \times 40.866 = 2008645.63 \mu$ steps, while for the ZFS series, a 1mm move requires $24 \times 2048 \times 400/9 = 2184533.33 \mu$ steps.

This table is relevant only for the Trinamic-based range of controllers listed above. Note that micro step values are for a position of 1mm, a velocity of 1mm/sec and an acceleration of 1mm/sec/sec.

Stage	Gearing	Position		Trinamic convert	ed Values
			Position(µs)	Velocity(µs/sec)	Acceleration(µs/sec ²)
ZST Series	0.0245 mm/turn	1mm	2008645.63	107824097.5	22097.3
ZFS Series	0.0225 mm/turn	1mm	2184533.33	117265749.2	24111.85
DRV001	0.5mm/turn	1mm	819200	43974656	9012
DRV208	0.5mm/turn	1mm	819200	43974656	9012
DRV013	1mm/turn	1mm	409600	21987328	4506
DRV014	1mm/turn	1mm	409600	21987328	4506
NRT100	1mm/turn	1mm	409600	21987328	4506
NRT150	1mm/turn	1mm	409600	21987328	4506
LTS150	1mm/turn	1mm	409600	21987328	4506
LTS300	1mm/turn	1mm	409600	21987328	4506
MLJ050	1mm/turn	1mm	409600	21987328	4506
MLJ150	1mm/turn	1mm	409600	21987328	4506
MLJ250	1mm/turn	1mm	409600	21987328	4506
DRV113	1.25mm/turn	1mm	327680	17589862	3605
DRV114	1.25mm/turn	1mm	327680	17589862	3605
FW103*	No gear	1.0002deg	1138	61088	13
NR360	5.4546deg/turn	0.99997deg	75091	4030885	826
HDR50	5.4546deg/turn	0.99997deg	75091	4030885	826
K10CR1	120:1 (3deg/turn)	1 deg	136533	7329109	1502

In the above table the numbers that need to be sent to the controllers are based upon the Trinamics chip set conversions. The position is just the absolute number of micro-steps as before, as compared with the BSC10X range, the only difference is the 16 times greater resolution. However, for velocity and acceleration different conversion factors are required to get to correct motion profiles. For example, if a velocity of 409600 micro-steps per sec is required, then multiply by 53.68 i.e., 409600*53.68 gives 21987328 which for a 1mm lead screw would give 1mm/sec.

To accelerate at a rate of 409600 micro-steps/sec/sec (1mm/sec/sec), divide 409600 by 90.9 which gives 4506.

9. Initialising the MLJ050, MLJ150 and MLJ250 Motorised Labjack

In order for the Labjack to respond with end of moves or home completed messages, the user must first send a set of valid home parameters (MGMSG_MOT_SET_HOMEPARAMS 0x0440), for example Tx 40,04,0E,00,D0,01,01,00,02,00,01,00,F4,70,EE,03,00,C0,03,00

This message should be sent as part of the initialisation process, and acts as a flag to the rest of the code to indicate that a server is connected. Failure to do this will result in the end of move or home completed messages not being received.

AN INTRODUCTION TO MULTI-AXIS SYNCHRONIZED MOVES

This section describes the implementation of multi-axis synchronized moves on the Thorlabs BBD30x series controllers.

To give developers a better understanding of the underlying principles of multi-axis synchronized moves, the relevant building blocks of the BMC10X controller are shown below:

Motor (Stage)

At the heart of nearly all motion control algorithms a trajectory generator is used to generate the position points where the motor is required to be at any one time. The trajectory (position target) values output by the trajectory generator are fed to the position loop controller which compares the target position to the actual position and adjusts the motor current, always trying to maintain the target position. Thus, when a move is commanded, the corresponding parameters are sent to the trajectory generator, which then calculates the position target values required to execute the move.

Trapezoidal move profiles

Simple linear point-to-point moves (which are also the most used moves) are conveniently described by the end position, acceleration and maximum velocity values.

At the start of the move, the motor accelerates to the specified maximum velocity, travels at that velocity, and then decelerates to zero velocity and reaches that at exactly the target position.

For simple multi-axis moves, the trapezoidal move scheme can easily be extended to two or more dimensions.

If we want to move from position (x1, y1) to position (x2, y2) with acceleration *Acc* and velocity *Vel*, then the moves for the individual axes will be effectively the vector projections of the overall 2-D move.

Thus, from the 2-D move parameters we can calculate the move parameters for each axis by simply multiplying *Acc* and *Vel* with the scaling factors:

$$Scale_{x} = \frac{x_{2} - x_{1}}{\sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}}$$

and
$$Scale_{y} = \frac{y_{2} - y_{1}}{\sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}}$$

Thus:

 $Acc_x = Acc * Scale_x$ and $Acc_y = Acc * Scale_y$ $Vel_x = Vel * Scale_x$ and $Vel_y = Vel * Scale_y$

Complex move shapes

The trapezoidal move profile is impractical for describing more complex move shapes, such as an arc or circle. For these, a different approach is used, and the move is described as a time-position array that defines the position targets the trajectory has to output at the predefined time points. For the time points in-between the specified points the trajectory generator uses linear interpolation.

The figure above shows the approach: the shape of the curve is described as a time-position array

(t₀, p₀), (t₁, p₁) ... (t_N, p_N)

The interval between the time points does not need to be equal. In fact, as linear interpolation is used between adjacent points, the algorithm effectively moves in a straight line between points, so more linear sections of the shape do not need to be described with the same frequency as more curved sections.

With this definition of the move trajectory the acceleration and velocity values are no longer predefined parameters but instead are implicit in the time-position difference between adjacent points. This also means that the user must pay attention to the velocity and acceleration limitations of the controller and the stage. With simple trapezoidal move profiles, the acceleration and velocity are normally set to values that are supported by the

controller and with reasonable values they result in smooth motion. The time-position array, on the other hand, allows the user more freedom but as a result also opens the possibility of move definitions that the controller cannot execute. For example, a large position change in a very short time can translate into excessive velocity and/or acceleration values. Whilst the approach can be used to define single axis moves, it is more useful for multi-axis synchronized moves. For these the time-position array contains the position points for each axis. Thus, the array defines the position of all axes involved in the move at the same time points. Assuming 2 dimensional (x, y) coordinates, the array becomes:

 $(t_0, x_0, y_0), (t_1, x_1, y_1) \dots (t_N, x_N, y_N)$

Obviously, the scheme can be extended to any number of axes that the controller supports.

Repeated patterns

To make the scheme more flexible, a section of the curve can also be repeated for several times. With this extension, the array can be considered as having a leading, a repeated and a tailing section. This is useful for applications where, for example, the repeated pattern needs to be preceded by an acceleration phase and then completed by deceleration to standstill. In the illustration below the section p_{K} to p_{L} is repeated.

	Leading section							Tai	ling Sect	ion
				>						>
p ₀	p ₁	p ₂		рк ↑	р _{к+1}	р _{К+2}	p∟ ↓	p _{L+1}	p _{L+2}	p _M
	< Repeated section									

Starting a synchronized trajectory

The user must consider the initial position of the stage when the trajectory is started. In almost all usage scenarios the stage will be at standstill when the synchronous move is started and immediately afterwards there will be a move to the first point in the timeposition array. This can result in a large jump. The easiest way of avoiding this is by moving the stage to the first point defined in the time-position array prior to starting the synchronized trajectory.

To define the multi-axis synchronized moves, the time-position array and the corresponding parameters must be downloaded to the controller. This is supported by the following commands:

MGMSG_MOT_SET_MOVESYNCHARRAY	0x0A00
MGMSG_MOT_SET_MOVESYNCHPARAMS	0x0A03
MGMSG_MOT_MOVE_SYNCHSTART	0x0A06

Generic System Control Messages

Introduction

The messages described here are either system control messages, or else generic messages which apply to several or all controller types. Please see the list of controller specific commands for details on applicability to a specific controller type.

MGMSG_MOD_IDENTIFY

0x0223

Function:Instruct hardware unit to identify itself (by flashing its front panel
LEDs).
In card-slot (bay) type of systems (which are usually the multi-
channel controllers such as BSC102, BSC103, BPC302, BPC303,
PPC102) the front panel LED that flashes in response to this
command is controlled by the motherboard, not the individual
channel cards. For these controllers the destination byte of the
MGMSG_MOD_IDENTIFY message must be the motherboard (0x11)
and the Channel Ident byte is used to select the channel to be
identified. In single-channel controllers the Channel Ident byte is
ignored as the destination of the command is uniquely identified by
the USB serial number of the controller.

Channel Idents 0x01 channel 1 0x02 channel 2

Command structure (6 bytes):

0	1 2		3	4	5	
header only						
23	02	Chan Ident	00	d	S	

Example:

Identify controller #1 (channel 1 of the BSC103 controller) by flashing its front panel LED.

TX 23, 02, 01, 00, 11, 01

Identify the TDC001 controller (possibly within a group of various Thorlabs controllers in system):

TX 23, 02, 00, 00, 50, 01

MGMSG_MOD_SET_CHANENABLESTATE MGMSG_MOD_REQ_CHANENABLESTATE MGMSG_MOD_GET_CHANENABLESTATE

0x0210 0x0211 0x0212

Function Sent to enable or disable the specified drive channel.

SET:

Command structure (6 bytes):

0	1	2	3	4	5			
	header only							
10	02	Chan	Enable	d	S			
		Ident	State					

Channel Idents

0x01 channel 1 0x02 channel 2

For the TIM101 4 channel controller, the following idents are also used 0x04 channel 3 0x08 channel 4

Enable States 0x01 enable channel 0x02 disable channel

For single channel controllers such as the BBD10X, TDC001, the Chan Ident byte is always set to CHAN1.

Note: Although the BBD102 is in fact a 2-channel controller, 'channel' in this sense means "motor output channel within this module". Electrically, the BBD102 is a bay system, with two bays, each of them being a single channel controller, so only one channel can be addressed. There are controllers in the Thorlabs product range which indeed have multiple output channels (for example the MST601 module) for which the channel ident is used to address a particular channel.

Example: Enable the motor channel in bay 2

TX 10, 02, 01, 01, 22, 01

Note: MGMSG_MOT_REQ_USTATUSUPDATE 0x0490 command should be used for MPC220 and MPC320 instead of MGMSG_MOD_REQ_CHANENABLESTATE 0x0211 and 0x0212.

Example: If Channel 4 needs to be enabled and Channels 1 and 2 need to be disabled, the below procedure must be followed.

TX 10, 02, 04, 02, 50, 01 TX 10, 02, 03, 01, 50, 01 This shows MPC status with paddle #3 disabled and paddles #1 and #2 enabled.

TX 90, 04, 01, 00, 50, 01 TX 90, 04, 02, 00, 50, 01 TX 90, 04, 04, 00, 50, 01 RX 91, 04, 0E, 00, 81, 50, 01, 00, AD, 02, 00, 00, 01, 00, 00, 00, 00,04,00, 80 RX 91, 04, 0E, 00, 81, 50, 02, 00, AD, 02, 00, 00, 01, 00, 00, 00, 00,04,00, 80 RX 91, 04, 0E, 00, 81, 50, 04, 00, AD, 02, 00, 00, 01, 00, 00, 00, 00,04,00, 00

REQ:

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
11	02	Chan	0	d	S		
		Ident					

As above, for single channel controllers such as the BBD10X, TDC001, the Chan Ident byte is always set to CHAN1.

GET:

Response structure (6 bytes):

0	1	2	3	4	5			
header only								
12	02	Chan	Enable	d	S			
		Ident	State					

The meaning of the parameter bytes "Chan Ident" and "Enable State" is the same as for the SET version of the commands.

MGMSG_HW_DISCONNECT

Function:Sent by the hardware unit or host to disconnect from the
Ethernet/USB bus.

REQ:

Command structure (6 bytes):

0	1	2	3	4	5					
header only										
02 00 00 00 d s										

Example:

Disconnect the BBD103 from the USB bus

TX 02, 00, 00, 00, 11, 00

MGMSG_HW_RESPONSE

0x0080

0x0002

Function:Sent by the controllers to notify Thorlabs Server of some event that
requires user intervention, usually some fault or error condition that
needs to be handled before normal operation can resume. The
message transmits the fault code as a numerical value – see the
Return Codes listed in the Thorlabs Server helpfile for details on the
specific return codes.

REQ:

Command structure (6 bytes):

0	1	2	3	4	5					
header only										
80 00 00 00 d s										

Example:

The BBD103 unit has encountered an over current condition

TX 80, 00, 00, 00, 01, 11

MGMSG_HW_RICHRESPONSE

Function: Similarly, to HW_RESPONSE, this message is sent by the controllers to notify Thorlabs Server of some event that requires user intervention, usually some fault or error condition that needs to be handled before normal operation can resume. However, unlike HW_RESPONSE, this message also transmits a printable text string. Upon receiving the message, Thorlabs Server displays both the numerical value and the text information, which is useful in finding the cause of the problem.

REQ:

Response structure (74 bytes):

6-byte header followed by 68-byte (0x44) data packet as follows:

0	1	2	3	4	5	6	7	8	9	1	0 1	1 17) 17) 1	4	1 Г
0	1		-	4	Э	0	/	ð	9	1			2 13	3 14	+	15
		he	ader			_		-			dat					
81	00	44	00	d	S	Ms	gldent	(Code			<	Note	S	>	
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30		31
								data								
<																>
								10105								
32	33	34	35	36	37	38	39	4	0 4	1	42	43	44	45	46	47
								data								
<							No	tes								;
48	49	50	51	52	53	54	55	5	6 5	7	58	59	60	61	62	63
								data								
<																
64	65	66	67	68	69	70	71	72	73							
				da	nta				•	1						
	<			N	otes			>								

Data structure:

field	description	format
Msgldent	If the message is sent in response to an Thorlabs Software	word
	message, these bytes show the message number that	
	evoked the message. Most often though the message is	
	transmitted due to some unexpected fault condition, in	
	which case these bytes are 0x00, 0x00	
Code	This is an internal Thorlabs specific code that specifies the	word]
	condition that has caused the message (see Return Codes).	
Notes	This is a zero-terminated printable (ascii) text string that	char[64
	contains the textual information about the condition that	bytes]
	has occurred. For example: "Hardware Time Out Error".	

0x0081

MGMSG_HW_START_UPDATEMSGS

Function:Sent to start automatic status updates from the embedded
controller. Status update messages contain information about the
position and status of the controller (for example limit switch status,
motion indication, etc). The messages will be sent by the controller
every 100 msec until it receives a STOP STATUS UPDATE MESSAGES
command. In applications where spontaneous messages (i.e.,
messages which are not received as a response to a specific
command) must be avoided the same information can also be
obtained by using the relevant GET_STATUSUPDATES function.

Command structure (6 bytes):

0	1	2	3	4	5							
	header only											
11	00	Unused	Unused	d	S							

REQUEST: N/A

MGMSG_HW_STOP_UPDATEMSGS

0x0012

Function:Sent to stop automatic status updates from the controller – usually
called by a client application when it is shutting down, to instruct
the controller to turn off status updates to prevent USB buffer
overflows on the PC.

SET: Command structure (6 bytes):

0	0 1 2 3 4 5									
header only										
12	12 00 00 00 d									

REQUEST:	N/A
GET:	N/A

0x0011

MGMSG_HW_REQ_INFO MGMSG_HW_GET_INFO

0x0005 0x0006

Function:

Sent to request hardware information from the controller.

REQ:

Command structure (6 bytes):

0	1	2	3	4	5					
header only										
05 00 00 00 d										

Example:

Request hardware info from controller #1

TX 05, 00, 00, 00, 11, 01

GET:

Response structure (90 bytes):

6 byte header followed by 84 byte (0x54) data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		hee	ader			data									
06	00	54	00	d	S	<-Serial Number >			<>Model Number>						

data <model> <type> <firmware> <for internal="" only<="" td="" use=""></for></firmware></type></model>		30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
<models <="" <eirmwares="" <types="" eer="" internal="" only<="" td="" use=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>nta</td><td>da</td><td colspan="10"></td></models>								nta	da										
No Version >	>		nly	al use oi	interna	For		<					>	<Туре					

32	33	34	35	36	37	38	39	9 4	0 4	1	42	43	44	45	46	47
								data								
<							For in	ternal	use only	/						>
48	49	50	51	52	53	54	55	55	6 5	7	58	59	60	61	62	63
								data								
<							For int	ernal u	use only							>
64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	7	79
								data								
<							For int	ernal u	use only							>

80	81	82	83	84	85	86	87	88	89	
data										
< Fo	r intern	al use o	nly>	HW \	/ersion	Mod	State	<-nc	hs>	

field	description	format
serial number	unique 8-digit serial number	long
model number	alphanumeric model number	char[8]
type	hardware type: 45 = multi-channel controller motherboard 44 = brushless DC controller	word
firmware version	firmware version byte[20] = minor revision number byte[21] = interim revision number byte[22] = major revision number byte[23] = unused	byte[4]
HW Version	The hardware version number	word
Mod State	The modification state of the hardware	word
nchs	number of channels	word

Data	
Data	structure:

Example:

Returned hardware info from controller #1

RX 06, 00, 54, 00, 81, 22, 89, 53, 9A, 05, 49, 4F, 4E, 30, 30, 31, 20, 00, 2C, 00, 02, 01, 39, 00,, 00, 01, 00, 01, 00, 00, 00, 01, 00

Header: 06, 00, 54, 00, 81, 22: Get Info, 54H (84) byte data packet, Motor Channel 2. Serial Number: 89, 53, 9A, 05: 94000009 Model Number: 49, 4F, 4E, 30, 30, 31, 20, 00: ION001 Type: 2C, 00: 44 – Brushless DC Controller Card firmware Version: 02, 01, 39, 00: 3735810 HW Version: 01, 00 Hardware version 01 Mod State: 03, 00, Modification stage 03. No Chan: 01, 00: 1 active channel

MGMSG_RACK_REQ_BAYUSED MGMSG_RACK_GET_BAYUSED

0x0060 0x0061

Function:

Sent to determine whether the specified bay in the controller is occupied.

REQ:

Command structure (6 bytes):

0	1	2	3	4	5
		header	only		
60	00	Bay Ident	00	d	S

Bay Idents

0x00 Bay 1 0x01 Bay 2 to 0x09 Bay 10

Example:

Is controller bay #1 (i.e., bay 0) occupied

TX 60, 00, 00, 00, 11, 01

GET:

Command structure (6 bytes):

0	1	2	3	4	5
		head	ler only		
61	00	Bay Ident	Bay State	d	S
		Ident	State		

Bay Idents

0x01 Bay 1 0x02 Bay 2 to 0x09 Bay 10

Bay States 0x01 Bay Occupied 0x02 Bay Empty (Unused)

Example:

Controller Bay #1 (i.e. bay 0) is occupied

RX 61, 00, 00, 01, 11, 01

MGMSG_HUB_REQ_BAYUSED MGMSG_HUB_GET_BAYUSED

0x0065 0x0066

Function:

Sent to determine to which bay a specific unit is fitted.

REQ:

Command structure (6 bytes):

0	1	2	3	4	5
		headei	r only		
65	00	00	00	d	S

TX 65, 00, 00, 00, 50, 01

GET:

Command structure (6 bytes):

0	1	2	3	4	5
		head	ler only		
66	00	Bay Ident	00	d	S
		Ident			

Bay Idents

-0x01 T-Cube being standalone, i.e., off the hub.

0x00 T-Cube on hub, but bay unknown

0x01 Bay 1

0x02 Bay 2 to

0x06 Bay 6

Example:

Which hub bay is the T-Cube unit fitted

RX 66, 00, 06, 00, 01, 50

MGMSG_RACK_REQ_STATUSBITS **MGMSG_**RACK_GET_STATUSBITS

0x0226 0x0227

This method is applicable only to the MMR modular rack, and 2- and 3-channel card slot type controllers such as the BSC103 and BPC202.

Function: The USER IO connector on the rear panel of these units exposes several digital inputs. This function returns several status flags pertaining to the status of the inputs on the rack modules, or the motherboard of the controller unit hosting the single channel controller card.

These flags are returned in a single 32-bit integer parameter and can provide additional useful status information for client application development. The individual bits (flags) of the 32-bit integer value are described below.

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5	
	header only					
26	02	Status	00	d	S	
		Bits				

GET:

Response structure (10 bytes) 6-byte header followed by 4-byte data packet as follows:

0	1	2	3	4	5	7	8	9	10
	header							ıta	
27	02	04	00	d s StatusBits					

Data Structure:

field	description	format
StatusBits	The status bits for the associated controller channel. The meaning of the individual bits (flags) of the 32-bit integer value will depend on the controller and are described in the following table.	dword

Hex Value	Bit Number	Description
0x0000001	1	Digital output 1 state (1 - logic high, 0 - logic low).
0x0000002	2	Digital output 2 state (1 - logic high, 0 - logic low).
0x0000004	3	Digital output 3 state (1 - logic high, 0 - logic low).
0x0000008	4	Digital output 4 state (1 - logic high, 0 - logic low).

Example: With destination being 0x11 (motherboard – see Introduction) and bay being bay 1, slot 2 (0x22)

TX 27, 02, 04, 00, 01, 22, 00, 00, 00, 00

Header: 27, 02, 04, 00, 01, 22: GetStatusBits, 04 byte data packet, bay 1 slot 2.

MGMSG_RACK_SET_DIGOUTPUTS MGMSG_RACK_REQ_DIGOUTPUTS MGMSG_RACK_GET_DIGOUTPUTS

0x0228 0x0229 0x0230

This method is applicable only to the MMR rack modules, and 2- and 3-channel card slot type controllers such as the BSC103 and BPC202.

Function:The USER IO connector on the rear panel of these units exposes
several digital outputs. These functions set and return the status of
the outputs on the rack modules, or the motherboard of the
controller unit hosting the single channel controller card.
These flags are returned in a single 32-bit integer parameter and can
provide additional useful status information for client application
development. The individual bits (flags) of the 32-bit integer value
are described below.

SET:

Data structure (6 bytes)

0	1	2	3	4	5	
header only						
28	02	Dig OP	00	d	S	

Hex Value	Bit Number	Description
0x0000001	1	Digital output 1 state (1 - logic high, 0 - logic low).
0x0000002	2	Digital output 2 state (1 - logic high, 0 - logic low).
0x0000004	3	Digital output 3 state (1 - logic high, 0 - logic low).
0x0000008	4	Digital output 4 state (1 - logic high, 0 - logic low).

Example: With destination being 0x11 (motherboard – see Introduction) and bay being bay 1, slot 2 (0x22), set Digital output 1 high

TX 28, 02, 01, 22, 11, 01,

Header: 28, 02, 01, 22, 11, 01: SetDigOutputs, 01 OP1 High, bay 1 slot 2, d=motherboard, s=PC.

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5	
header only						
29	02	00	00	d	S	

GET:

Response structure (6 bytes)

0	1	2	3	4	5		
header only							
30 02 00 00 d s							

See SET above for structure

MGMSG_MOD_SET_DIGOUTPUTS	0x0213
MGMSG_MOD_REQ_DIGOUTPUTS	0x0214
MGMSG_MOD_GET_DIGOUTPUTS	0x0215

Function:The CONTROL IO connector on the rear panel of the unit exposes
several digital outputs. The number of outputs available depends on
the type of unit. This message is used to configure these digital
outputs.

SET:

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
13 02 Bit 00 d s							

Note. On brushless DC controllers (e.g., BBD201), the digital output and trigger output use a common pin. Before calling this message to set the digital output, the trigger functionality must be disabled by calling the <u>Set Trigger</u> message.

The outputs are set (and returned) in the bits of the Bits parameter, input No 1 being the least significant bit and input No 4 being the most significant. The number of bits used is dependent on the number of digital outputs present on the associated hardware unit.

For example, to turn on the digital output on a BSC201 motor controller, the least significant bit of the Bits parameter should be set to 1. Similarly, to turn on all four digital outputs on a BNT001 NanoTrak unit, the bits of the Bits parameter should be set to 1111 (15), and to turn the same outputs off, the Bits should be set to 0000.

Example: Set the digital input of the BSC201 controller on:

TX 13, 02, 01, 00, 50, 01

REQ: Command structure (6 bytes):

0	1	2	3	4	5		
header only							
14	02	Bits	00	d	S		

GET:

Response structure (6 bytes):

0	1	2	3	4	5		
header only							
15	02	Bit	00	d	S		

For structure see SET message above.

MGMSG_HW_SET_KCUBEMMILOCK	0x0250
MGMSG_HW_REQ_KCUBEMMILOCK	0x0251
MGMSG_HW_GET_KCUBEMMILOCK	0x0252

THIS MESSAGE IS APPLICABLE ONLY TO K-CUBE NanoTrak (KNA101-IR), K-Cube Laser Source (KLS1550 and KLS635) and K-Cube Laser Diode Driver (KLD101) UNITS

Function:This message is used to lock/unlock the controls on the top panel of
the K-Cube units (wheel, joystick, buttons etc). Safety features such
as the power switch and laser enable are not affected by this
message. The message has global effect for all channels present on a
particular unit. If the MMILock byte is set to 0x01, the controls are
locked, if set to 0x02 the controls are unlocked. This message is non-
volatile and will reset to unlock with each power cycle.

SET:

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
50 02 00 MMILock d s							

Example:

Lock the top panel controls:

TX 50, 02, 00, 01, 50, 01

REQ:

Command structure (6 bytes):

GET:

Response structure (6 bytes):

0	1	2	3	4	5	
header only						
52	02	00	MMILock	d	S	

For structure see SET message above.

MGMSG_RESTOREFACTORYSETTINGS

0x0686

THIS MESSAGE IS APPLICABLE ONLY TO THE FOLLOWING CONTROLLERS: Benchtop Piezo Controllers (BPC301 and BPC303) K-CUBE NanoTrak (KNA101-IR) K-Cube Laser Source (KLS1550 and KLS635) K-Cube Laser Diode Driver (KLD101) UNITS

Function:If the system has become unstable, possibly due to multiple changes
to parameter values, this message can be sent to the controller to
reset parameters to the default values stored in the EEPROM.

TX structure (6 bytes):

0	1	2	3	4	5	
header only						
86	06	Chan	00	d	S	
		Ident				

Motor Control Messages

Introduction

The 'Motor' messages provide the functionality required for a client application to control one or more of the Thorlabs series of motor controller units. This range of motor controllers covers DC servo and stepper drivers in a variety of formats including compact Cube type controllers, benchtop units and 19" rack based modular drivers. Note for ease of description, the TSC001 T-Cube Solenoid Controller is considered here as a motor controller. The list of controllers covered by the motor messages includes:

BSC001 – 1 Channel Benchtop Stepper Driver BSC002 – 2 Channel Benchtop Stepper Driver BMS001 – 1 Channel Benchtop Low Power Stepper Driver BMS002 – 2 Channel Benchtop Low Power Stepper Driver MST601 – 2 Channel Modular Stepper Driver MST602 – 2 Channel Modular Stepper Driver (2013 onwards) BSC101 – 1 Channel Benchtop Stepper Driver (2006 onwards) BSC102 – 2 Channel Benchtop Stepper Driver (2006 onwards) BSC103 – 3 Channel Benchtop Stepper Driver (2006 onwards) BSC201 – 1 Channel Benchtop Stepper Driver (2012 onwards) BSC202 – 2 Channel Benchtop Stepper Driver (2012 onwards) BSC203 – 3 Channel Benchtop Stepper Driver (2012 onwards) BBD101 - 1 Channel Benchtop Brushless DC Motor Driver BBD102 – 2 Channel Benchtop Brushless DC Motor Driver BBD103 - 3 Channel Benchtop Brushless DC Motor Driver BBD201 – 1 Channel Benchtop Brushless DC Motor Driver BBD202 – 2 Channel Benchtop Brushless DC Motor Driver BBD203 – 3 Channel Benchtop Brushless DC Motor Driver OST001 – 1 Channel Cube Stepper Driver ODC001 – 1 Channel Cube DC Servo Driver TST001 – 1 Channel T-Cube Stepper Driver TDC001 – 1 Channel T-Cube DC Servo Driver TSC001 – 1 Channel T-Cube Solenoid Driver TDIxxx - 2 Channel Brushless DC Motor Driver TBD001 – 1 Channel T-Cube Brushless DC Driver KST101 – 1 Channel K-Cube Stepper Driver KDC101 – 1 Channel K-Cube DC Servo Driver KSC101 – 1 Channel K-Cube Solenoid Driver KBD101 – 1 Channel K-Cube Brushless DC Driver

The motor messages can be used to perform activities such as homing stages, absolute and relative moves, changing velocity profile settings and operation of the solenoid state (on

solenoid control units). With a few exceptions, these messages are generic and apply equally to both single and dual channel units.

Where applicable, the target channel is identified in the Chan Ident parameter and on single channel units, this must be set to CHAN1_ID. On dual channel units, this can be set to CHAN1_ID, CHAN2_ID or CHANBOTH_ID as required.

For details on the operation of the motor controller, and information on the principles of operation, refer to the handbook supplied with the unit.

MGMSG_HW_YES_FLASH_PROGRAMMING

Function:This message is sent by the server on start-up; however, it is a
deprecated message (i.e., has no function) and can be ignored.

Command structure (6 bytes):

0	1	2	3	4	5	
header only						
17 00 Unused Unused d						

REQUEST: N/A

MGMSG_HW_NO_FLASH_PROGRAMMING

Function:This message is sent on start up to notify the controller of the
source and destination addresses. A client application must send
this message as part of its initialization process.

SET: Command structure (6 bytes):

0	1	2	3	4	5	
header only						
18 00 00 00 d s						

REQUEST:	N/A
GET:	N/A

0x0017

0x0018

MGMSG MOT SET POSCOUNTER	
MGMSG_MOT_REQ_POSCOUNTER	
MGMSG MOT GET POSCOUNTER	

0x0410

0x0411

0x0412

Function: Used to set the 'live' position count in the controller. In general, this command is not normally used. Instead, the stage is homed immediately after power-up (at this stage the position is unknown as the stage is free to move when the power is off); and after the homing process is completed the position counter is automatically updated to show the actual position. From this point onwards the position counter always shows the actual absolute position.

SET:

Command structure (12 bytes) 6-byte header followed by 6-byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		he	ader			Data					
10	04	06	00	d	S	Chan Ident			Po	sition	

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Position	The new value of the position counter as a 32-bit signed	long
	integer, encoded in the Intel format. The scaling between real	
	time values and this parameter is detailed in Section 8.	

Example: MLS203 and BBD102: Set the position counter for channel 2 to 10.0 mm

TX 10, 04, 06, 00, A2, 01, 01, 00, 40, 0D, 03, 00

Header: 10, 04, 06, 00, A2, 01: SetPosCounter, 06 byte data packet, Channel 2. *Chan Ident: 01, 00*: Channel 1 (always set to 1 for TDC001) *Position*: 40, 0D, 03, 00: Set Counter to 10 mm (10 x 20,000)

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5				
header only									
11	04	Chan Ident	00	d	S				

GET:

Response structure (12 bytes)

6-byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		he	ader			Data					
12	04	06	00	d	S	Chan Ident		Chan Ident P			

For structure see SET message above.

0x0403 0x040A 0x040B

Function: Similarly, to the PosCounter message described previously, this message is used to set the encoder count in the controller and is only applicable to stages and actuators fitted with an encoder. In general, this command is not normally used. Instead, the stage is homed immediately after power-up (at this stage the position is unknown as the stage is free to move when the power is off); and after the homing process is completed the position. From this point onwards the encoder counter always shows the actual absolute position.

SET:

Command structure (12 bytes) 6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		he	ader			Data					
09	04	06	00	d	S	Chan Ident Encoder Count					

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Encoder	The new value of the encoder counter as a 32-bit signed	long
Count	integer, encoded in the Intel format. The scaling between real	
	time values and this parameter is detailed in Section 8.	

Example: MLS203 and BBD102: Set the encoder counter for channel 2 to 10.0 mm

TX 09, 04, 06, 00, A2, 01, 01, 00, 40, 0D, 03, 00

Header: 09, 04, 06, 00, A2, 01: SetEncCounter, 06 byte data packet, Channel 2. *Chan Ident: 01, 00*: Channel 1 (always set to 1 for TDC001) *Position*: 40, 0D, 03, 00: Set Counter to 10 mm (10 x 20,000)

REQUEST:

Command structure (6 bytes):

0	1 2		2 3		5				
header only									
0A	04	Chan Ident	00	d	S				

GET:

Response structure (12 bytes) 6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		he	ader			Data					
OB	04	06	00	d	S	Chan Ident			Encod	ler Count	

For structure see SET message above.

0x0413

0x0414

0x0415

MGMSG_MOT_SET_VELPARAMS MGMSG_MOT_REQ_VELPARAMS MGMSG_MOT_GET_VELPARAMS

Function: Used to set the trapezoidal velocity parameters for the specified motor channel. For DC servo controllers, the velocity is set in encoder counts/sec and acceleration is set in encoder counts/sec/sec. For stepper motor controllers the velocity is set in microsteps/sec and acceleration is set in microsteps/sec/sec.

SET:

Command structure (20 bytes)

6 byte header followed by 14 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		h	eader			Data					
13	04	0E	00	d	S	Chan Ident Min Velocity					

12	13	14	15	16	17	18	19				
	Data										
	Accele	eration			Max V	elocity					

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Minimum	The minimum (start) velocity in encoder counts/sec	long
(Start) Vel	Currently, this 4-byte value is always zero	
Acceleration	The acceleration in encoder counts /sec/sec.	long
	4-byte unsigned long value. If applicable, the scaling	
	between real time values and this parameter is detailed in	
	Section 8.	
Maximum Vel	The maximum (final) velocity in encoder counts /sec.	long
	4-byte unsigned long value. If applicable, the scaling	
	between real time values and this parameter is detailed in	
	Section 8.	

Example: MLS203 and BBD102: Set the trapezoidal velocity parameters for chan 2 as follows:

> Min Vel: zero Acceleration: 10 mm/sec/sec Max Vel: 99 mm/sec

TX 13, 04, 0E, 00, A2, 01, 01, 00, 00, 00, 00, 00, B0, 35, 00, 00, CD, CC, CC, 00

Header: 13, 04, 0E, 00, A2, 01: Set Vel Params, 0EH (14) byte data packet, Channel 2. Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001) Min Vel: 00, 00, 00, 00: Set min velocity to zero Accel: 89, 00, 00, 00: Set acceleration to 10 mm/sec/sec (13.744 x 10) Max Vel: 9E, CO, CA, OO: Set max velocity to 99 mm/sec (134218 x 99)

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5			
header only								
14	04	Chan	00	d	S			
		Ident						

GET:

Response structure (20 bytes)

6 byte header followed by 14 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hee	ader			Data					
15	04	0E	00	d	S	Chan Ident Min Velocity					

12	13	14	15	16	17	18	19			
	Data									
	Accele	ration			Max	Velocity				

For structure see SET message above.

MGMSG_MOT_SET_JOGPARAMS MGMSG_MOT_REQ_JOGPARAMS MGMSG_MOT_GET_JOGPARAMS

0x0416 0x0417 0x0418

Function:

Used to set the velocity jog parameters for the specified motor channel, For DC servo controllers, values set in encoder counts. For stepper motor controllers the values is set in microsteps.

SET:

Command structure (28 bytes)

6 byte header followed by 22 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header						Data				
16	04	16	00	d	S	Chan	Ident	Jog N	Лode	Jog Ste	ep Size
12	13	14	1	5 16	5 1	7 18	3 19	20	21		
					Data						
Jog S	Step Size		Jog I	Vin Velo	city		Jog Ad	celeratio	n		
							-				

22	23	24	25	26	27				
Data									
J	og Max	Stop I	Mode						

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Jog Mode	This 2-byte value can be 1 for continuous jogging or 2 for single step jogging. In continuous jogging mode the movement continues for as long as the jogging trigger (the jogging button on the GUI or an external signal) is being active. In single step mode triggering jogging initiates a single move whose step size is defined as the next parameter (see below).	word
Jog Step Size	The jog step size in encoder counts. The scaling between real time values and this parameter is detailed in Section 8.	long
Jog Min Velocity	The minimum (start) velocity in encoder counts /sec. Currently, this 4-byte value is always zero.	long
Jog Acceleration	The acceleration in encoder counts /sec/sec The scaling between real time values and this parameter is detailed in Section 8.	long
Jog Max Velocity	The maximum (final) velocity in encoder counts /sec. The scaling between real time values and this parameter is detailed in Section 8.	long
Jog Stop Mode	The stop mode. This 16-bit word can be 1 for immediate (abrupt) stop or 2 for profiled stop (with controlled deceleration).	word

Example: MLS203 and BBD102: Set the jog parameters for channel 2 as follows: Jog Mode: Continuous Jog Step Size:0.05 mm Jog Min Vel: Zero Jog Accel: 10 mm/sec/sec Jog Max Vel: 99 mm/sec Jog Stop Mode: Profiled

TX 16, 04, 16, 00, A2, 01, 01, 00, 01, 00, E8, 03, 00, 00, 00, 00, 00, 00, 00, B0,35, 00, 00, CD, CC, CC, 00, 02, 00

Header: 16, 04, 16, 00, A2, 01: Set Jog Params, 16H (28) byte data packet, Channel 2.
Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001)
Jog Mode: 01,00,: Set jog mode to 'continuous'
Jog Step Size: E8, 03, 00, 00: Set jog step size to 0.05 mm (1,000 encoder counts).
Jog Min Vel: 00, 00, 00, 00: Set min jog velocity to zero
Jog Accel: 89, 00, 00, 00: Set acceleration to 10 mm/sec/sec (13.744 x 10)
Jog Max Vel: 9E, C0, CA, 00: Set max velocity to 99 mm/sec (134218 x 99)
Jog Stop Mode: 02, 00: Set jog stop mode to 'Profiled Stop'.

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5			
header only								
17	04	Chan	00	d	S			
		Ident						

GET:

Response structure (28 bytes)

6 byte header followed by 22 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
header						Data					
18	04	16	00	d	S	Chan Ident Jog Mode			Jog Ste	ep Size	

		-		-	-		-	-				
12	13	14	15	16	17	18	19	20	21			
	Data											
Jog Ste	Jog Step Size Jog Min Velocity						Step Size Jog Min Velocity Jog Acceleration					

22	23	24	25	26	27			
Data								
J	og Max	Stop I	Mode					

For structure see SET message above.

MGMSG_MOT_REQ_ADCINPUTS MGMSG_MOT_GET_ADCINPUTS

Function:This message reads the voltage applied to the analog input on the
rear panel CONTROL IO connector and returns a value in the
ADCInput1 parameter. The returned value is in the range 0 to
32768, which corresponds to zero to 5 V.
Note. The ADCInput2 parameter is not used at this time.
In this way, a 0 to 5V signal generated by a client system could be
read in by calling this method and monitored by a custom client
application. When the signal reaches a specified value, the
application could instigate further actions, such as a motor move.

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5				
	header only								
2B	04	Chan Ident	00	d	S				

GET:

Command structure (10 bytes) 6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6 7 8			9
		heo	ader	Data					
2C	04	04	00	d	S	ADCInput1 ADCInput			nput2

Data Structure:

field	description	format
ADCInput1	The voltage state of the analog input pin, in the range 0 to	word
	32768, which corresponds to zero to 5 V.	
ADCInput2	Not used	word

Example: Get the ADC input state

RX 2C, 04, 04, 00, A2, 01, 01, 00, 00, 00,

Header: 2B, 04, 04, 00, A2, 01: GetADCInputs, 04 byte data packet, Channel 2. *ADCInput1: 00, 80*: ADC Input 1 = 5V *ADCInput2*: 00, 00: Not Used r

MGMSG_MOT_SET_POWERPARAMS MGMSG_MOT_REQ_POWERPARAMS MGMSG_MOT_GET_POWERPARAMS

0x0426 0x0427 0x0428

Note for BSC20x, MST602 and TST101 controller users

If the controllers listed above are used with Thorlabs SoftwareServer, the ini file will typically have values set of 5 for the rest power and 30 for the move power. Although these values are loaded when the server boots only the rest power value is used. This allows the user to set the rest current as normal. The move power however is not used. The move power is set within the controller as a function of velocity. This command can be used only to set the rest power.

The command MGMSG_MOT_REQ_POWERPARAMS will return the default values or the values that were set.

Function: The power needed to hold a motor in a fixed position is much smaller than that required for a move. It is good practice to decrease the power in a stationary motor to reduce heating, and thereby minimize thermal movements caused by expansion. This message sets a reduction factor for the rest power and the move power values as a percentage of full power. Typically, move power should be set to 100% and rest power to a value significantly less than this.

SET:

Command structure (12 bytes) 6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
	header						Data					
26	04	06	00	d	S	Chan Ident RestFactor		Move	eFactor			

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
RestFactor	The phase power value when the motor is at rest, in the range 1 to 100 (i.e., 1% to 100% of full power).	word
MoveFactor	The phase power value when the motor is moving, in the range 1 to 100 (i.e., 1% to 100% of full power).	word

Example: Set the phase powers for channel 2 for TST001 unit

TX 26, 04, 06, 00, A2, 01, 01, 00, 0A, 00, 64, 00

Header: 26, 04, 06, 00, A2, 01: SetPowerParams, 06 byte data packet, Channel 2.
Chan Ident: 01, 00: Channel 1 (always set to 1 for TST001)
RestFactor: 0A, 00: Set rest power to 10% of full power
MoveFactor: 64, 00: Set move power to 100% of full power

REQUEST:

Command structure (6 bytes):

0	1	2	3 4		5			
header only								
27	04	Chan	00	d	S			
		Ident						

GET:

Response structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11		
	header						Data						
28	04	06	00	d	S	Chan Ident		Chan Ident		Rest	Factor	Move	Factor

For structure see SET message above.
MGMSG_MOT_SET_GENMOVEPARAMS MGMSG_MOT_REQ_GENMOVEPARAMS MGMSG_MOT_GET_GENMOVEPARAMS

0x043A 0x043B 0x043C

Function:Used to set the general move parameters for the specified motor
channel. Currently this refers specifically to the backlash settings.

SET:

Command structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
header						Data					
3A	04	06	00	d	S	Chan	Ident		Backlash	Distance	

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Backlash	The value of the backlash distance as a 4-byte signed	long
Distance	integer, which specifies the relative distance in position	
	counts. The scaling between real time values and this	
	parameter is detailed in Section 8.	

Example: MLS203 and BBD102: Set the backlash distance for chan 2 to 1 mm:

TX 3A, 04, 06, 00, A2, 01, 01, 00, 20, 4E, 00, 00,

Header: 3A, 04, 06, 00, A2, 01: SetGenMoveParams, 06 byte data packet, Channel 2. *Chan Ident: 01, 00*: Channel 1 (always set to 1 for TDC001) *Backlash Dist: 20, 4E, 00, 00*: Set backlash distance to 1 mm (20,000 encoder counts).

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5
		head	ler only		
3B	04	Chan Ident	00	d	S

GET:

Response structure (12 bytes) 6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
	header						Data					
3C	04	06	00	d	S	Chan	Ident		Backlash	Distance		

MGMSG_MOT_SET_MOVERELPARAMS MGMSG_MOT_REQ_MOVERELPARAMS MGMSG_MOT_GET_MOVERELPARAMS

0x0445 0x0446 0x0447

Function: Used to set the relative move parameters for the specified motor channel. The only significant parameter currently is the relative move distance itself. This gets stored by the controller and is used the next time a relative move is initiated.

SET:

Command structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder			Data					
45	04	06	00	d	S	Chan	Ident		Relative	Distance	

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Relative	The distance to move. This is a 4-byte signed integer that	long
Distance	specifies the relative distance in position encoder counts.	
	The scaling between real time values and this parameter is	
	detailed in Section 8.	

Example: MLS203 and BBD102: Set the relative move distance for chan 2 to 10 mm:

TX 45, 04, 06, 00, A2, 01, 01, 00, 40, 0D, 03, 00,

Header: 45, 04, 06, 00, A2, 01: SetMoveRelParams, 06 byte data packet, Channel 2. Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001) Rel Dist: 40, 0D, 03, 00: Set relative move distance to 10 mm (10 x 20,000 encoder counts).

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5
		head	ler only		
46	04	Chan Ident	00	d	S

GET:

Response structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
	header						Data					
47	04	06	00	d	S	Chan Ident Relative Distance						

MGMSG_MOT_SET_MOVEABSPARAMS MGMSG_MOT_REQ_MOVEABSPARAMS MGMSG_MOT_GET_MOVEABSPARAMS

0x0450 0x0451 0x0452

Function:Used to set the absolute move parameters for the specified motor
channel. The only significant parameter currently is the absolute
move position itself. This gets stored by the controller and is used
the next time an absolute move is initiated.

SET:

Command structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder			Data					
50	04	06	00	d	S	Chan Ident Absolute Positio				Position	

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Absolute	The absolute position to move. This is a 4 byte signed	long
Position	integer that specifies the absolute position in position	
	encoder counts. The scaling between real time values and	
	this parameter is detailed in Section 8.	

Example: MLS203 and BBD102: Set the absolute move position for chan 2 to 10 mm:

TX 50, 04, 06, 00, A2, 01, 01, 00, 40, 0D, 03, 00,

Header: 50, 04, 06, 00, A2, 01: SetMoveAbsParams, 06 byte data packet, Channel 2. Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001) Abs Pos: 40, 0D, 03, 00: Set absolute move position to 10 mm (200,000 encoder counts).

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5
		head	ler only		
51	04	Chan Ident	00	d	S

GET:

Response structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder			Data					
52	04	06	00	d	S	Chan Ident Absolute Position					

MGMSG_MOT_SET_HOMEPARAMS MGMSG_MOT_REQ_HOMEPARAMS MGMSG_MOT_GET_HOMEPARAMS

0x0440 0x0441 0x0442

Function:

Used to set the home parameters for the specified motor channel. These parameters are stage specific and for the MLS203 stage implementation the only parameter that can be changed is the homing velocity.

SET:

Command structure (20 bytes)

6 byte header followed by 14 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header					Data					
40	04	OE	00	d	S	Chan Ident		Hom	e Dir	Limit S	Switch

12	13	14	15	16	17	18	19			
	Data									
	Home \	/elocity			Offset D	Distance				

field	description	format
Chan Ident	The channel being addressed	word
Home	The direction sense for a move to Home, either	word
Direction	1 - forward/Positive or	
	2 - reverse/negative.	
Limit Switch	The limit switch associated with the home position	word
	1 - hardware reverse or	
	4 - hardware forward	
Home	The homing velocity. A 4 byte unsigned long value. The	long
Velocity	scaling between real time values and this parameter is	
	detailed in Section 8.	
Offset	The distance of the home position from the Home Limit	long
Distance	Switch. This is a 4 byte signed integer that specifies the	
	offset distance in position encoder counts. The scaling	
	between real time values and this parameter is detailed in	
	Section 8	

Example: MLS203 and BBD102: Set the home parameters for chan 2 as follows: Home Direction: Not used (always positive). Limit Switch: Not used Home Vel: 24 mm/sec Offset Dist: Not used.

TX 40, 04, 0E, 00, A2, 01, 01, 00, 00, 00, 00, 00, 33. 33, 33, 00, 00, 00, 00, 00

Header: 40, 04, 0E, 00, A2, 01: SetHomeParams, 14 byte data packet, Channel 2. Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001) Home Direction: 00, 00: Not Applicable Limit Switch: 00, 00: Not Applicable Home Velocity: 33, 33, 33, 00: 24 mm/sec (3355443/134218) Offset Distance: 00, 00, 00, 00: Not used

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5					
	header only									
41	04	Chan	00	d	S					
		Ident								

GET:

Response structure (20 bytes) 6 byte header followed by 14 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
0	1	2	5	4	5	6	/	0	9	10	11
	header					Data					
42	04	0E	00	d	S	Chan	Ident	Hom	e Dir	Limit	Switch
12	13	14	15	16	17	18	19				
	Data										
	Home Velocity Offset					Distance					

MGMSG_MOT_SET_LIMSWITCHPARAMS MGMSG_MOT_REQ_LIMSWITCHPARAMS MGMSG_MOT_GET_LIMSWITCHPARAMS

0x0423 0x0424 0x0425

These functions are not applicable to BBD10x units.

Function:Used to set the limit switch parameters for the specified motor
channel.

SET:

Command structure (22 bytes)

6 byte header followed by 16 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header						Data				
23	04	10	00	d	S	Chan Ident CW Hardlimit			CCM F	lardlimit	
								1			
12	13	14	15	16	17	18	19	20	21]	
	Data										
	CW Soft Limit CCW So							Limit	Mode]	

field	description	format
Chan Ident	The channel being addressed	word
CW Hard Limit	The operation of the Clockwise hardware limit switch when contact is made.	word
	0x01 Ignore switch or switch not present.	
	0x02 Switch makes on contact.	
	0x03 Switch breaks on contact.	
	0x04 Switch makes on contact - only used for homes (e.g. limit switched rotation stages).	
	0x05 Switch breaks on contact - only used for homes (e.g. limit switched rotations stages).	
	0x06 For PMD based brushless servo controllers only - uses index mark for homing.	
	Note. Set upper bit to swap CW and CCW limit switches in	
	code. Both CWHardLimit and CCWHardLimit structure	
	members will have the upper bit set when limit switches	
	have been physically swapped.	
	0x80 // bitwise OR'd with one of the settings above.	
CCW Hard	The operation of the counter clockwise hardware limit	word
Limit	switch when contact is made.	
CW Soft Limit	Clockwise software limit in position steps. A 32 bit unsigned	long
	long value, the scaling factor between real time values and	
	this parameter is 1 mm is equivalent to 134218. For	
	example, to set the clockwise software limit switch to 100	
	mm, send a value of 13421800. (Not applicable to TDC001 units)	
CCW Soft Limit	Counter clockwise software limit in position steps (scaling as for CW limit). (Not applicable to TDC001 units)	long

Software	Software limit switch mode	word
Limit Mode	0x01 Ignore Limit	
	0x02 Stop Immediate at Limit	
	0x03 Profiled Stop at limit	
	0x80 Rotation Stage Limit (bitwise OR'd with one of the	
	settings above) (Not applicable to TDC001 units)	

Example: Set the limit switch parameters for chan 2 as follows: CW Hard Limit – switch makes. CCW Hard Limit - switch makes CW Soft Limit – set to 100 mm CCW Soft Limit - set to 0 mm Software Limit Mode – Profiled Stop

TX 23, 04, 10, 00, A2, 01, 01, 00, 02, 00, 02, 00, E8. CC, CC, 00, 00, 00, 00, 00, 03, 00

Header: 23, 04, 10, 00, A2, 01: SetLimSwitchParams, 16 byte data packet, Channel 2. Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001) CW Hard Limit: 02, 00: Switch Makes CCW Hard Limit: 02, 00: Switch Makes CW Soft Limit: E8, CC, CC, 00: 100 mm (13421800/134218) CCW Soft Limit: 00, 00, 00, 00: 0 mm Soft Limit Mode: 03, 00: Profiled Stop at Limit

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5					
	header only									
24	04	Chan	00	d	S					
		Ident								

GET:

Response structure (20 bytes) 6 byte header followed by 16 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header				Data						
25	04	10	00	d	S	Chan	Ident	CW Ha	rdlimit	CCM H	lardlimit
										_	
12	13	14	15	16	17	18	19	20	21		
	Da	ıta									
CW Soft Limit CCW So				oft Limit		Limit	Mode				

MGMSG_MOT_MOVE_HOME MGMSG_MOT_MOVE_HOMED

0x0443 0x0444

Function:Sent to start a home move sequence on the specified motor channel
(in accordance with the home parameters above).

TX structure (6 bytes):

0	1	2	3	4	5				
header only									
43	04	Chan	0x	d	S				
		Ident							

Example:

Home the motor channel in bay 2

TX 43, 04, 01, 00, 22, 01

HOMED:

Function:No response on initial message, but upon completion of home
sequence controller sends a "homing completed" message:

RX structure (6 bytes):

0	1	2	3	4	5					
	header only									
44	04	Chan Ident	0x	d	S					

Example:

The motor channel in bay 2 has been homed

RX 44, 04, 01, 00, 01, 22

MGMSG_MOT_MOVE_RELATIVE

0x0448

Function:This command can be used to start a relative move on the specified
motor channel (using the relative move distance parameter above).
There are two versions of this command: a shorter (6-byte header
only) version and a longer (6 byte header plus 6 data bytes) version.
When the first one is used, the relative distance parameter used for
the move will be the parameter sent previously by a
MGMSG_MOT_SET_MOVERELPARAMS command. If the longer
version of the command is used, the relative distance is encoded in
the data packet that follows the header.

Short version:

TX structure (6 bytes):

0	1	2	3	4	5		
header only							
48	04	Chan	0x	d	S		
		Ident					

Example: Move the motor associated with channel 2 by 10 mm. (10 mm was previously set in the MGMSG_MOT_SET_MOVERELPARAMS method).

TX 48, 04, 01, 00, 22, 01

Long version:

The alternative way of using this command is by appending the relative move params structure (MOT_SET_MOVERELPARAMS) to this message header.

Command structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header							Da	ıta		
48	04	06	00	d	S	Chan Ident Relative Distance					

field	description	format
Chan Ident	The channel being addressed	Word
Relative	The distance to move. This is a 4 byte signed integer that	Long
Distance	specifies the relative distance in position encoder counts. In	
	the BBD10X series controllers the encoder resolution is	
	20,000 counts per mm, therefore, to set a relative move	
	distance of 1 mm, set this parameter to 20,000 (twenty	
	thousand).	

Example: Move the motor associated with chan 2 by 10 mm:

TX 48, 04, 06, 00, A2, 01, 01, 00, 40, 0D, 03, 00,

Header: 45, 04, 06, 00, A2, 01: MoveRelative, 06 byte data packet, Channel 2. Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001) Rel Dist: 40, 0D, 03, 00: Set absolute move distance to 10 mm (200,000 encoder counts).

Upon completion of the relative move the controller sends a Move Completed message as described following.

MGMSG_MOT_MOVE_COMPLETED

0x0464

Function:No response on initial message, but upon completion of the relative
or absolute move sequence, the controller sends a "move
completed" message:

RX structure (20 bytes):

0	1	2	3	4	5		
header only							
64	04	Chan	0x	d	S		
		Ident					

Followed by a 14-byte data packet described by the same status structures (i.e. MOTSTATUS and MOTDCSTATUS) described in the STATUS UPDATES section that follows.

MGMSG_MOT_MOVE_ABSOLUTE

0x0453

Function: Used to start an absolute move on the specified motor channel (using the absolute move position parameter above). As previously described in the "MOVE RELATIVE" command, there are two versions of this command: a shorter (6-byte header only) version and a longer (6 byte header plus 6 data bytes) version. When the first one is used, the absolute move position parameter used for the move will be the parameter sent previously by a MGMSG_MOT_SET_MOVEABSPARAMS command. If the longer version of the command is used, the absolute position is encoded in the data packet that follows the header.

Short version:

TX structure (6 bytes):

0	1	2	3	4	5			
header only								
53	04	Chan Ident	0x	d	S			

Example: Move the motor associated with channel 2 to 10 mm. (10 mm was previously set in the MGMSG_ MOT_SET_MOVEABSPARAMS method).

TX 53, 04, 01, 00, 22, 01

Long version:

The alternative way of using this command by appending the absolute move params structure (MOTABSMOVEPARAMS) to this message header.

Command structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header							Da	ıta		
53	04	06	00	d	S	Chan Ident Absolute Distance					

field	description	format
Chan Ident	The channel being addressed	Word
Absolute Distance	The distance to move. This is a 4 byte signed integer that specifies the absolute distance in position encoder counts. In the BBD10X series controllers the encoder resolution is	Long
	distance of 100 mm, set this parameter to 2,000,000 (two million).	

Example: Move the motor associated with chan 2 to 10 mm:

TX 53, 04, 06, 00, A2, 01, 01, 00, 40, 0D, 03, 00,

Header: 45, 04, 06, 00, A2, 01: MoveAbsolute, 06 byte data packet, Channel 2. Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001) Abs Dist: 40, 0D, 03, 00: Set the absolute move distance to 10 mm (200,000 encoder counts).

Upon completion of the absolute move the controller sends a Move Completed message as previously described.

MGMSG_MOT_MOVE_JOG

0x046A

Function:

Sent to start a jog move on the specified motor channel.

TX structure (6 bytes):

0	1	2	3	4	5		
header only							
6A	04	Chan	Direction	d	S		
		Ident					

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Direction	The direction to Jog. Set this byte to 0x01 to jog forward, or	word
	to 0x02 to jog in the reverse direction.	

Upon completion of the jog move the controller sends a Move Completed message as previously described.

Note. The direction of the jog move is device dependent, i.e., on some devices jog forward may be towards the home position while on other devices it could be the opposite.

MGMSG_MOT_MOVE_VELOCITY

0x0457

Function:This command can be used to start a move on the specified motor
channel.
When this method is called, the motor will move continuously in the
specified direction, using the velocity parameters set in the
MGMSG_MOT_SET_VELPARAMS command until either a stop
command (either StopImmediate or StopProfiled) is called, or a limit
switch is reached.

TX structure (6 bytes):

0	1	2	3	4	5
		he	ader only		
57	04	Chan Ident	Direction	d	S

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Direction	The direction to Jog. Set this byte to 0x01 to move forward,	word
	or to 0x02 to move in the reverse direction.	

Upon completion of the move the controller sends a Move Completed message as previously described.

Example: Move the motor associated with channel 2 forwards.

TX 57, 04, 01, 01, 22, 01

Special Note for MST602 units

The MST602 is a true 2-channel controller, rather than two single channel controllers. In this case, as well as the Chan Ident parameter, the channel being addressed is also specified in the Direction parameter (byte 3). The lower 4 bit nibble of the direction parameter is used to address channel 1 and the upper 4 bit nibble is used to address channel 2.

Examples to move channel1 forward, TX 57, 04, 01, 01,22,01 to move channel 1 backward, TX 57, 04, 01, 02,22,01

to move channel 2 forward, TX 57, 04, 02, 10,22,01 to move channel 2 backward, TX 57, 04, 02, 20,22,01

MGMSG_MOT_MOVE_STOP

0x0465

Function:

Sent to stop any type of motor move (relative, absolute, homing or move at velocity) on the specified motor channel.

TX structure (6 bytes):

0	1	2	3	4	5			
header only								
65	04	Chan	Stop	d	S			
		Ident	Mode					

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Stop Mode	The stop mode defines either an immediate (abrupt) or profiles tops. Set this byte to 0x01 to stop immediately, or to 0x02 to stop in a controller (profiled) manner.	word

Upon completion of the stop move the controller sends a Move Stopped message as described following

MGMSG_MOT_MOVE_STOPPED

0x0466

Function:No response on initial message, but upon completion of the stop
move, the controller sends a "move stopped" message:

RX structure (20 bytes):

0	1	2	3	4	5				
	header only								
66	04	0E	0x	d	S				

Followed by a 14-byte data packet described by the same status structures (i.e., MOTSTATUS and MOTDCSTATUS) described in the STATUS UPDATES section that follows.

MGMSG_MOT_SET_BOWINDEX MGMSG_MOT_REQ_BOWINDEX MGMSG_MOT_GET_BOWINDEX

0x04F4 0x04F5 0x04F6

Function: To prevent the motor from stalling, it must be ramped up gradually to its maximum velocity. Certain limits to velocity and acceleration result from the torque and speed limits of the motor, and the inertia and friction of the parts it drives. The system incorporates a trajectory generator, which performs calculations to determine the instantaneous position, velocity, and acceleration of each axis at any given moment. During a motion profile, these values will change continuously. Once the move is complete, these parameters will then remain unchanged until the next move begins. The specific move profile created by the system depends on several factors, such as the profile mode and profile parameters presently selected, and other conditions such as whether a motion stop has been requested. The Bow Index parameter is used to set the profile mode to either Trapezoidal or S-curve. A Bow Index of '0' selects a trapezoidal profile. An index value of '1' to '18' selects an S-curve profile. In either case, the velocity and acceleration of the profile are specified using the Velocity Profile parameters on the Moves/Jogs tab. The Trapezoidal profile is a standard, symmetrical acceleration/deceleration motion curve, in which the start velocity is always zero. This profile is selected when the Bow Index field is set to '0'.

In a typical trapezoidal velocity profile, (see above), the stage is ramped at acceleration 'a' to a maximum velocity 'v'. As the destination is approached, the stage is decelerated at 'a' so that the final position is approached slowly in a controlled manner.

The S-curve profile is a trapezoidal curve with an additional 'Bow Value' parameter, which limits the rate of change of acceleration and smooths out the contours of the motion profile. The Bow Value is applied in mm/s³ and is derived from the Bow Index as follows: Bow Value = 2 ($^{Bow Index -1}$) within the range 1 to 262144 (Bow Index 1 to 18). In this profile mode, the acceleration increases gradually from 0 to the specified acceleration value, then decreases at the same rate until it reaches 0 again at the specified velocity. The same sequence in reverse brings the axis to a stop at the programmed destination position.

Example

The figure above shows a typical S-curve profile. In segment (1), the S-curve profile drives the axis at the specified Bow Index (BI) until the maximum acceleration (A) is reached. The axis continues to accelerate linearly (Bow Index = 0) through segment (2). The profile then applies the negative value of Bow Index to reduce the acceleration to 0 during segment (3). The axis is now at the maximum velocity (V), at which it continues through segment (4). The profile then decelerates in a similar manner to the acceleration phase, using the Bow Index to reach the maximum deceleration (D) and then bring the axis to a stop at the destination.

Note

The higher the Bow Index, then the shorter the BI phases of the curve, and the steeper the acceleration and deceleration phases. High values of Bow Index may cause a move to overshoot.

SET:

Command structure (10 bytes)

6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
	header						Da	ıta	
F4	04	04	00	d	S				Index

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
BowIndex	This parameter is used to set the profile mode to either Trapezoidal or S-curve. A Bow Index of '0' selects a trapezoidal profile. An index value of '1' to '18' selects an S- curve profile.	word

Example: Set the Bow Index to 18 for Channel 1 as follows:

TX F4, 04, 04, 00, A2, 01, 01, 00, 12, 00,

Header: F4, 04, 04, 00, A2, 01: Set_BowIndex, 04 byte data packet, *Chan Ident: 01, 00*: Channel 1 *Bow Index: 12, 00,:* Set the Bow Index to 18

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5
		head	ler only		
F5	04	Chan	00	d	S
		Ident			

GET:

6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
		hea	ıder				Do	ata	
F6	04	04	00	d	S	Chan Ident Bow Index			Index

MGMSG_MOT_SET_DCPIDPARAMS MGMSG_MOT_REQ_DCPIDPARAMS MGMSG_MOT_GET_DCPIDPARAMS

0x04A0 0x04A1 0x04A2

Function:Used to set the position control loop parameters for the specified
motor channel.The motion processor within the controller uses a position control
loop to determine the motor command output. The purpose of the
position loop is to match the actual motor position and the
demanded position. This is achieved by comparing the demanded
position with the actual position to create a position error, which is
then passed through a digital PID-type filter. The filtered value is the
motor command output.NOTE.These settings apply to LM628/629 based servo controllers
(only TDC001 at this time). Refer to data sheet for National
Semiconductor LM628/LM629 for further details on setting these
PID related parameters.

SET:

Command structure (26 bytes)

6 byte header followed by 20 byte data packet as follows:

1	2	3	4	5	6	7	8	9	10	11
	hea	ıder	Data							
04	14	00	d	S	Chan Ident Proportional					
13	14	15	16	17	18	19	20	21	22	23
Data										
Integral Deriv				vative			Integra	al Limit		
	13	04 14 13 14	header 04 14 00 13 14 15	header 04 14 00 d 13 14 15 16	header 04 14 00 d s 13 14 15 16 17	header Chan 04 14 00 d s Chan 13 14 15 16 17 18 Data	header Image: constraint of the second	header Do 04 14 00 d s Chan Ident 13 14 15 16 17 18 19 20 Data	header Data 04 14 00 d s Chan Ident Propo 13 14 15 16 17 18 19 20 21 Data	header Data 04 14 00 d s Chan Ident Proportional 13 14 15 16 17 18 19 20 21 22 Data

24	25
Da	ıta
FilterC	ontrol

field	description	format
Chan Ident	The channel being addressed	word
Proportional	The proportional gain. Together with the Integral and	long
	Derivative, these terms determine the system response	
	characteristics and accept values in the range 0 to 32767.	
Integral	The integral gain. Together with the Proportional and	long
	Derivative, these terms determine the system response	
	characteristics and accept values in the range 0 to 32767.	
Derivative	The derivative gain. Together with the Proportional and	long
	Integral, these terms determine the system response	
	characteristics and accept values in the range 0 to 32767.	
Integral Limit	The Integral Limit parameter is used to cap the value of the	long
	Integrator to prevent runaway of the integral sum at the	
	output. It accepts values in the range 0 to 32767. If set to 0	
	then the integration term in the PID loop is ignored.	
FilterControl	Identifies which of the above parameters are applied by	word

setting the corresponding bit to '1'. By default, all	
parameters are applied, and this parameter is set to OF	
(1111).	

Example: Set the PID parameters for TDC001 as follows: Proportional: 65 Integral: 175 Derivative: 600 Integral Limit: 20,000 FilCon: 15

TX A0, 04, 14, 00, D0, 01, 01, 00, 41, 00, AF, 00, 58, 02, 20, 4E, 00, 00, 0F, 00

Header: A0, 04, 14, 00, D0, 01: Set_DCPIDParams, 20 byte data packet, Generic USB Device.
Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001)
Proportional: 41, 00,: Set the proportional term to 65
Integral: AF, 00,: Set the integral term to 175
Derivative: 58, 02,: Set the derivative term to 600
Integral Limit: 20, 4E, 00, 00,: Set the integral limit to 20,000
FilterControl: 0F, 00: Set all terms to active.

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5
		head	ler only		
A1	04	Chan	00	d	S
		Ident			

GET:

6 byte header followed by 20 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder			Data					
A2	04	14	00	d	S	Chan Ident Proportional					
12	13	14	15	16	17	18	19	20	21	22	23
					Da	ata					
	Inte	gral		Deriva					Integra	al Limit	

Issue 40

0x04B3

0x04B4

0x04B5

MGMSG_MOT_SET_AVMODES MGMSG_MOT_REQ_AVMODES **MGMSG MOT GET AVMODES**

It is not applicable for K10CR1 and K10CR2

Function: The LED on the control keypad can be configured to indicate certain driver states.

> All modes are enabled by default. However, it is recognised that in a light sensitive environment, stray light from the LED could be undesirable. Therefore, it is possible to enable selectively, one or all the LED indicator modes described below by setting the appropriate value in the Mode Bits parameter.

SET:

Command structure (10 bytes)

6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	
		he	ader			Data				
B3	04	04	00	d	S	Chan Ident		Mode	Bits	

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
ModeBits	 The mode of operation for the LED is set according to the hex value entered in the mode bits. 1 LEDMODE_IDENT: The LED will flash when the 'Ident' message is sent. 	word
	2 LEDMODE_LIMITSWITCH: The LED will flash when the motor reaches a forward or reverse limit switch.	
	8 LEDMODE_MOVING: The LED is lit when the motor is moving.	

Example: Set the LED to flash when the IDENT message is sent, and when the motor is moving.

TX B3, 04, 04, 00, D0, 01, 01, 00, 09, 00,

Header: B3, 04, 04, 00, D0, 01: SetAVModes, 04 byte data packet, Generic USB Device. Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001) *ModeBits*: 09, 00 (i.e. 1 + 8)

Similarly, if the ModeBits parameter is set to '11' (1 + 2 + 8) all modes will be enabled.

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
11	04	Chan	00	d	S		
		Ident					

GET:

Response structure (10 bytes)

6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	
		hee	ader				D	ata		
B5	04	04	00	d	S	Chan Ident		Mode	Bits	

MGMSG_MOT_SET_POTPARAMS MGMSG_MOT_REQ_POTPARAMS MGMSG_MOT_GET_POTPARAMS

0x04B0 0x04B1 0x04B2

Function: The potentiometer slider on the control panel is sprung, such that when released it returns to its central position. In this central position the motor is stationary. As the slider is moved away from the centre, the motor begins to move; the speed of this movement increases as the slider deflection is increased. Bidirectional control of motor moves is possible by moving the slider in both directions. The speed of the motor increases by discrete amounts rather than continuously, as a function of slider deflection. These speed settings are defined by 4 pairs of parameters. Each pair specifies a pot deflection value (in the range 0 to 127) together with an associated velocity (set in encoder counts/sec) to be applied at or beyond that deflection. As each successive deflection is reached by moving the pot slider, the next velocity value is applied. These settings are applicable in either direction of pot deflection, i.e., 4 possible velocity settings in the forward or reverse motion directions. **Note**. The scaling factor between encoder counts and mm/sec depends on the specific stage/actuator being driven.

SET:

Command structure (32 bytes) 6 byte header followed by 26 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11		
	header						Data						
B0	04	1A	00	d	S	Chan Ident ZeroWnd			Ve	Vel1			
12	13	14	15	16	17	18	19	20	21	22	23		
					Da	ıta							
Ve	el1	Wr	nd1		Ve	Vel2			Wnd2		Vel3		
						I							

24	25	26	27	28	29	30	31
			Da	ıta			
Ve	el3	Wr	nd3		Ve	el4	

field	description	format
Chan Ident	The channel being addressed	word
ZeroWnd	The deflection from the mid position (in ADC counts 0 to 127)	word
	before motion can start	
Vel1	The velocity (in encoder counts /sec) to move when between	long
	Wnd0 and PotDef1	
Wnd1	The deflection from the mid position (in ADC counts, Wnd0	word
	to 127) to apply Vel1	
Vel2	The velocity (in encoder counts /sec) to move when between	long
	PotDef1 and PotDef2	
Wnd2	The deflection from the mid position (in ADC counts, PotDef1	word
	to 127) to apply Vel2	

Vel3	The velocity (in encoder counts/sec) to move when between PotDef2 and PotDef3	long
Wnd3	The deflection from the mid position (in ADC counts PotDef2 to 127) to apply Vel3	word
Vel4	The velocity (in encoder counts /sec) to move when beyond PotDef3	long

Example: For the Z8 series motors, there are 512 encoder counts per revolution of the motor. The output shaft of the motor goes into a 67:1 planetary gear head. This requires the motor to rotate 67 times to rotate the 1.0 mm pitch lead screw one revolution. The result is the lead screw advances by 1.0 mm.

Therefore, a 1 mm linear displacement of the actuator is given by

512 x 67 = 34,304 encoder counts

whereas the linear displacement of the lead screw per encoder count is given by

1.0 mm / 34,304 counts = 2.9 x 10-5 mm (29 nm).

Typical parameters settings Hex (decimal)

ZeroWnd – 14 (20) Vel1 – 66, 0D,00,00 (3430) Wnd1 – 32 (50) Vel2 – CC, 1A, 00, 00 (6860) Wnd2 – 50 (80) Vel3 – 32, 28, 00, 00 (10290) Wnd3 – 64 (100) Vel4 – 00, 43, 00, 00 (17152)

Using the parameters above, no motion will start until the pot has been deflected to 20 (approx 1/6 full scale deflection), when the motor will start to move at 0.1mm/sec. At a deflection of 50 (approx 2/5 full scale deflection) the motor velocity will increase to 0.2mm/sec, and at 80, velocity will increase to 0.3 mm/sec. When the pot is deflected to 100 and beyond, the velocity will be 0.5 mm/sec.

Note. It is acceptable to set velocities equal to reduce the number of speeds, however this is not allowed for the deflection settings, whereby the Wnd3 Pot Deflection value must be greater than Wnd2 Pot Deflection value.

TX *B0, 04, 1A, 00, D0, 01,* 01, 00, 01, 00, E8, 03, 00, 00, 00, 00, 00, 00, B0,35, 00, 00, CD, CC, CC, 00, 02, 00

Header: B0, 04, 1A, 00, D0, 01: Set Pot Params, 1AH (26) byte data packet, Generic USB Device.
Chan Ident: 01, 00: Channel 1 (always set to 1 for TDC001)
Wnd0: 14 (20 ADC Counts)
Vel1: 66, 0D,00,00 (3430 Encoder Counts/sec = 0.1 mm/sec)
PotDef1: 32 (50 ADC Counts)
Vel2: CC, 1A, 00, 00 (6860 Encoder Counts/sec = 0.2 mm/sec)
PotDef2: 50 (80 ADC Counts)

Vel3: 32, 28, 00, 00 (10290 Encoder Counts/sec = 0.3 mm/sec) PotDef3: 64 (100 ADC Counts) Vel4: 00, 43, 00, 00 (17152 Encoder Counts/sec = 0.5 mm/sec)

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
17	04	Chan	00	d	S		
		Ident					

GET:

Response structure (28 bytes) 6 byte header followed by 22 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
	header						Data					
BO	04	1A	00	d	S	Chan	Ident	Zero	Wnd	Vel1		
12	13	14	15	16	17	18	19	20	21	22	23	
					Do	ata						
Ve	el1	Wr	nd1		Ve	el2	Wnd2		nd2	Vel3		
24	25	26	27	28	29	30	31					
24	25	20	27	20	29	30	51					
Data												
Ve	el3	Wr	nd3		Ve	el4						

MGMSG_MOT_SET_BUTTONPARAMS MGMSG_MOT_REQ_BUTTONPARAMS MGMSG_MOT_GET_BUTTONPARAMS

0x04B6 0x04B7 0x04B8

Function:The control keypad can be used either to jog the motor, or to
perform moves to absolute positions. This function is used to set the
front panel button functionality.

SET:

Command structure (22 bytes)

6 byte header followed by 16 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
		hec	ıder				Data					
B6	04	10	00	d	S	Chan Ident Mode			ode	Position1		
12	13	14	15	16	17	18	19	20	21			
	Data											
Posit	ion1		Posit	ion2		Time	Out1	Dut2				

field	description	format
Chan Ident	The channel being addressed	word
<u>Chan Ident</u> Mode	The buttons on the keypad can be used either to jog the motor (jog mode), or to perform moves to absolute positions (go to position mode). If set to 0x01, the buttons are used to jog the motor. Once set to this mode, the move parameters for the buttons are taken from the 'Jog' parameters set via the 'Move/Jogs' settings tab or the SetJogParams methods. If set to 0x02, each button can be programmed with a different position value (as set in the Position 1 and Position 2 parameters), such that the controller will move the motor	word
Position1	 to that position when the specific button is pressed. The position (in encoder counts) to which the motor will move when the top button is pressed. This parameter is applicable only if 'Go to Position is 	long
	selected in the 'Mode' parameter.	
Position2	The position (in encoder counts) to which the motor will move when the bottom button is pressed. This parameter is applicable only if 'Go to Position is selected in the 'Mode' parameter.	long
TimeOut1	A 'Home' move can be performed by pressing and holding both buttons. Furthermore, the present position can be entered into the Position 1 or Position 2 parameter by holding down the associated button. The Time Out parameter specifies the time in ms that button 1 must be depressed. This function is independent of the 'Mode' setting and in normal circumstances should not require adjustment. (Not applicable to TDC001 units)	word
TimeOut2	As TimeOut1 but for Button 2.	word

Example: Set the button parameters for TDC001 as follows: Mode: Go To Position Position1: 0.5 mm Position2: 1.2 mm TimeOut: 2 secs

TX B6, 04, 10, 00, D0, 01, 01, 00, 02, 00, C0, 12, 00, 00, 00, 00, 00, 00, 00, 00

Header: B6, 04, 10, 00, D0, 01: SetButtonParams, 10H (16) byte data packet, Generic USB Device *Chan Ident: 01, 00*: Channel 1 (always set to 1 for TDC001) *Mode: 02, 00 (i.e. Go to position) Position1*: 00, 43, 00, 00 (17152 Encoder Counts = 0.5 mm) *Position2*: CC, A0, 00, 00 (41164 encoder counts = 1.2 mm): *TimeOut*: D0, 07: (2 seconds)

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5			
header only								
B7	04	Chan	00	d	S			
		Ident						

GET:

Response structure (20 bytes) 6 byte header followed by 16 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header							ata			
B8	04	10	00	d	S	Chan	Ident	М	ode	Pos	ition1
12	13	14	15	16	17	18	19	20	21		
	Data										
Posit	ion1		Posit	ion2		TimeOut1 TimeOut2					

MGMSG_MOT_SET_EEPROMPARAMS

Function: Used to save the parameter settings for the specified message. These settings may have been altered either through the various method calls or through user interaction with the GUI (specifically, by clicking on the 'Settings' button found in the lower right hand corner of the user interface).

SET:

Command structure (10 bytes) 6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	
	header						Data			
B9	04	04	00	d	S	Chan Ident MsgID			gID	

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
MsgID	The message ID of the message containing the parameters to be saved.	word

Example:

TX B9, 04, 04, 00, D0, 01, 01, 00, B6, 04,

Header: B9, 04, 04, 00, D0, 01: Set_EEPROMPARAMS, 04 byte data packet, Generic USB Device.

Chan Ident: 01, 00: Channel 1

MsgID: Save parameters specified by message 04B6 (SetButtonParams).

0x04B9

MGMSG_MOT_SET_POSITIONLOOPPARAMS MGMSG_MOT_REQ_POSITIONLOOPPARAMS MGMSG_MOT_GET_POSITIONLOOPPARAMS

0x04D7 0x04D8 0x04D9

Function:Used to set the position control loop parameters for the specified
motor channel.

The motion processors within the BBD series controllers use a position control loop to determine the motor command output. The purpose of the position loop is to match the actual motor position and the demanded position. This is achieved by comparing the demanded position with the actual encoder position to create a position error, which is then passed through a digital PID-type filter. The filtered value is the motor command output.

SET:

Command structure (34 bytes)

6 byte header followed by 28 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
		hea	ıder					Da	ıta			
D7	04	1C	00	d	S	Chan	Ident	Кр	Pos	Inte	gral	
12	13	14	15	16	17	18	19	20	21	22	23	
	Data											
	ILim	Pos		Deriv	vative	KdTin	nePos	Kou	tPos	KvffPos		
24	25	26	27	28	29	30	31	32	33]		
				Do	nta							
Kaff	Pos		PosE	rrLim		Paran	nSetlx	N/	ΥA			

field	description	format
Chan Ident	The channel being addressed	word
Kp Pos	The proportional gain. Together with the Integral and	word
	Derivative, these terms determine the system response	
	characteristics and accept values in the range 0 to 32767.	
Integral	The integral gain. Together with the Proportional and	word
	Derivative, these terms determine the system response	
	characteristics and accept values in the range 0 to 32767.	
ILimPos	The Integral Limit parameter is used to cap the value of the	dword
	Integrator to prevent runaway of the integral sum at the	
	output. It accepts values in the range 0 to 7FFFFFFF. If set to	
	0 then the integration term in the PID loop is ignored.	
Derivative	The derivative gain. Together with the Proportional and	word
	Integral, these terms determine the system response	
	characteristics and accept values in the range 0 to 32767.	
KdTimePos	Under normal circumstances, the derivative term of the PID	word
	loop is recalculated at every servo cycle. However, it may be	
	desirable to reduce the sampling rate to a lower value, in	
	order to increase stability or simplify tuning. The KdTimePos	
	parameter is used to set the sampling rate. For example, if	

		1
	set to 10, the derivative term is calculated every 10 servo	
	cycles. The value is set in cycles, in the range 1 to 32767.	
KoutPos	The KoutPos parameter is a scaling factor applied to the	word
	output of the PID loop. It accepts values in the range 0 to	
	65535, where 0 is 0% and 65535 is 100%.	
KvffPos	The KvffPos and KaffPos parameters are velocity and	word
KaffPos	acceleration feed-forward terms that are added to the	word
	output of the PID filter to assist in tuning the motor drive	
	signal. They accept values in the range 0 to 32767.	
PosErrLim	Under certain circumstances, the actual encoder position	dword
	may differ from the demanded position by an excessive	
	amount. Such a large position error is often indicative of a	
	potentially dangerous condition such as motor failure,	
	encoder failure or excessive mechanical friction. To warn of,	
	and guard against this condition, a maximum position error	
	can be set in the PosErrLim parameter, in the range 0 to	
	7FFFFFFF. The actual position error is continuously	
	compared against the limit entered, and if exceeded, the	
	Motion Error bit (bit 15) of the Status Register is set and the	
	associated axis is stopped.	
ParamSetlx	It is possible to enter a set of PID parameters for different	word
	operating scenarios, e.g. motor is stationary, motor is	
	accelerating, motor is at constant velocity. The specific set	
	of PID parameters to use when the function is called is set in	
	the ParamSetIx parameter as follows:	
	0 = Position PID parameters to apply when motor is	
	stationary	
	1 = Position PID parameters to apply when motor is	
	accelerating	
	2 = Position PID parameters to apply when motor is at	
	constant velocity	
	,	
	NOTE. This parameter is not applicable to BBD10x and	
	BBD20x units and in this case, the units use the values from	
	the last time the command was sent.	
Not Used		word

Example: Set the PID parameters for chan 2 as follows: Proportional: 65 Integral: 175 Integral Limit: 80,000 Derivative: 600 KdTimePos: 5 KoutPos: 5% KvffPos: 0 KaffPos: 1000 PosErrLim: 65535 ParamSetIx: 1

TX D7, 04, 1C, 00, A2, 01, 01, 00, 41, 00, AF, 00, 80, 38, 01, 00, 58, 02, 05, 00, CD, 0C, 00, 00, E8, 03, FF, FF, 01, 00, 00, 00

Header: D7, 04, 1C, 00, A2, 01: Set_PositionLoopParams, 28 byte data packet, Channel 2. Chan Ident: 01, 00: Channel 1 (always set to 1 for BBD202) Proportional: 41, 00,: Set the proportional term to 65 Integral: AF, 00,: Set the integral term to 175 Integral Limit: 80, 38, 01, 00,: Set the integral limit to 80,000 Derivative: 58, 02,: Set the derivative term to 600 KdTimePos: 05, 00,: Set the sampling rate to 5 cycles KoutPos: CD, 0C,: Set the output scaling factor to 5% (i.e. 3277) KvffPos: 00, 00,: Set the velocity feed forward value to zero KaffPos: E8, 03,: Set the acceleration feed forward value to 1000 PosErrLim: FF, FF, 00, 00,: Set the position error limit to 65535. ParamSetIx: 01, 00,: Use PID parameter set 1.

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5			
header only								
D8	04	Chan	00	d	S			
		Ident						

GET:

Response structure (34 bytes) 6 byte header followed by 28 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder			Data					
D9	04	1C	00	d	S	Chan Ident Kp Pos Integral					gral
12	13	14	15	16	17	18	19	20	21	22	23
					Da	nta					
	ILin	Pos		Deriv	/atve	KdTimePos K			KoutPos		Pos

24	25	26	27	28	29	30	31	32	33
	Data								
Kaff	KaffPos PosErrLim						N/A		

MGMSG_MOT_SET_MOTOROUTPUTPARAMS MGMSG_MOT_REQ_MOTOROUTPUTPARAMS MGMSG_MOT_GET_MOTOROUTPUTPARAMS

0x04DA 0x04DB 0x04DC

Function:Used to set certain limits that can be applied to the motor drive
signal. The individual limits are described below.

SET:

Command structure (20 bytes)

6 byte header followed by 14 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder		Data						
DA	04	OE	00	d	S	Chan	Ident	Cont Cu	rent Lim	Energ	gy Limit
								_			
12	13	14	15	16	17	18	19				
	Data										
Motor	r Limit	Motor	r Bias	Not L	lsed	Not l	Jsed				

field	description	format
Chan Ident	The channel being addressed	word
ContCurrentLim	The system incorporates a current 'foldback' facility, whereby the continuous current level can be capped. The continuous current limit is set in the ContCurrentLim parameter, which accepts values as a percentage of maximum peak current, in the range 0 to 32767 (0 to 100%), which is the default maximum level set at the factory (this maximum value cannot be altered).	word
EnergyLim	When the current output of the drive exceeds the limit set in the ContCurrentLim parameter, accumulation of the excess current energy begins. The EnergyLim parameter specifies a limit for this accumulated energy, as a percentage of the factory set default maximum, in the range 0 to 32767 (0 to 100%). When the accumulated energy exceeds the value specified in the EnergyLim parameter, a 'current foldback' condition is said to exist, and the commanded current is limited to the value specified in the ContCurrentLim parameter. When this occurs, the Current Foldback status bit (bit 25) is set in the Status Register. When the accumulated energy above the ContCurrentLim value falls to 0, the limit is removed and the status bit is cleared.	word
MotorLim	The MotorLim parameter sets a limit for the motor drive signal and accepts values in the range 0 to 32767 (100%). If the system produces a value greater than the limit set, the motor command takes the limiting value. For example, if MotorLim is set to 30000 (91.6%), then signals greater than 30000 will be output as 30000 and values less than -30000 will be output as -30000.	word
MotorBias	Not implemented.	word

Not Used	word
Not Used	word

Example: Set the motor output parameters for chan 2 as follows: Continuous Current: 20% Energy Limit: 14% Motor Limit: 100% Motor Bias: zero

TX DA, 04, 0E, 00, A2, 01, 01, 00, 99, 19, C0, 12, 00, 00, 00, 00, 00, 00, 00, 00

Header: DA, 04, 0E, 00, A2, 01: Set MotorOutputParams, 0EH (14) byte data packet, Channel 2.

Chan Ident: 01, 00: Channel 1 (always set to 1 for BBD202) Cont Current Limit: Energy Limit: 99, 19: Set the energy limit to 14% Motor Limit: C0, 12: Set the motor limit to 100% Motor Bias: 00, 00: Set the motor bias to zero

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5			
header only								
DB	04	Chan	00	d	S			
		Ident						

GET:

Response structure (20 bytes)

6 byte header followed by 14 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
	header						Data					
DC	04	OE	00	d	S	Chan Ident		Cont Cur	rent Lim	Energy Limit		

12	13	14	15	16	17	18	19		
Data									
Motor Limit Mo		Moto	r Bias	Not l	Jsed	Not Used			

MGMSG_MOT_SET_TRACKSETTLEPARAMS MGMSG_MOT_REQ_TRACKSETTLEPARAMS MGMSG_MOT_GET_TRACKSETTLEPARAMS

0x04E0 0x04E1 0x04E2

Function: Moves are generated by an internal profile generator, and are based on either a trapezoidal or S-curve trajectory. A move is considered complete when the profile generator has completed the calculated move and the axis has 'settled' at the demanded position. This command contains parameters which specify when the system is settled.

Further Information

The system incorporates a monitoring function, which continuously indicates whether or not the axis has 'settled'. The 'Settled' indicator is bit 14 in the Status Register and is set when the associated axis is settled. Note that the status bit is controlled by the processor, and cannot be set or cleared manually.

The axis is considered to be 'settled' when the following conditions are met:

* the axis is at rest (i.e. not performing a move),

* the error between the demanded position and the actual motor position is less than or equal to a specified number of encoder counts (0 to 65535) set in the *SettleWnd* parameter (Settle Window),

* the above two conditions have been met for a specified number of cycles (settle time, 1 cycle = 102.4 μ s), set in the *SettleTime* parameter (range 0 to 32767).

The above settings are particularly important when performing a sequence of moves. If the PID parameters are set such that the settle window cannot be reached, the first move in the sequence will never complete, and the sequence will stall. The settle window and settle time values should be specified carefully, based on the required positional accuracy of the application. If positional accuracy is not a major concern, the settle time should be set to '0'. In this case, a move will complete when the motion calculated by the profile generator is completed, irrespective of the actual position attained, and the settle parameters described above will be ignored.

The processor also provides a 'tracking window', which is used to monitor servo performance outside the context of motion error. The tracking window is a programmable position error limit within which the axis must remain, but unlike the position error limit set in the SetDCPositionLoopParams method, the axis is not stopped if it moves outside the specified tracking window. This function is useful for processes that rely on the motor's correct tracking of a set trajectory within a specific range. The tracking window may also be used as an early warning for performance problems that do not yet qualify as motion error.

The size of the tracking window (i.e. the maximum allowable position error while remaining within the tracking window) is specified in the *TrackWnd* parameter, in the range 0 to 65535. If the position error of the axis exceeds this value, the Tracking Indicator status bit (bit 13) is
set to 0 in the Status Register. When the position error returns to within the window boundary, the status bit is set to 1.

SET:

Command structure (18 bytes) 6 byte header followed by 12 byte data packet as follows:

Not Used

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder								
EO	04	0C	00	d	S	Chan Ident Time Settle Win					/indow
12	13	14	15	16	17						
	Data										

Not Used

Data Structure:

Track Window

field	description	format
Chan Ident	The channel being addressed	word
Time	The time that the associated axis must be settled before the	word
	'Settled' status bit is set. The time is set in cycles, in the	
	range 0 to 32767, 1 cycle = 102.4 μs.	
Settle	The position error is defined as the error between the	word
Window	demanded position and the actual motor position. This	
	parameter specifies the number of encoder counts (in the	
	range 0 to 65535) that the position error must be less than	
	or equal to, before the axis is considered 'settled'.	
Track Window	The maximum allowable position error (in the range 0 to	word
	65535) whilst tracking.	
Not Used		word
Not Used		word

Example: Set the track and settle parameters for chan 2 as follows: Settle Time: 20% Settle Window: 14% Track Window: 100%

s

TX E0, 04, 0C, 00, A2, 01, 01, 00, 00, 00, 14, 00, 00, 00, 00, 00, 00, 00, 00, 00

Header: E0, 04, 0C, 00, A2, 01: SetTrackSettledParams, 0CH (12) byte data packet, Channel 2.
Chan Ident: 01, 00: Channel 1 (always set to 1 for BBD202)
Time: 00, 00: Set the Settle time to zero
Settle Window: 14, 00: Set the settle window to 20 encoder counts
Track Window: 00, 00: Set the track window to zero.

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5					
header only										
E1	04	Chan	00	d	S					
		Ident								

GET:

Response structure (18 bytes)

6 byte header followed by 12 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
header					Data						
E2	04	0C	00	d	S	Chan Ident Time Settle		Settle W	/indow		

12	13	14	15	16	17					
Data										
Track V	Vindow	Not	Used	Not	Used					

MGMSG_MOT_SET_PROFILEMODEPARAMS MGMSG_MOT_REQ_PROFILEMODEPARAMS MGMSG_MOT_GET_PROFILEMODEPARAMS

0x04E3 0x04E4 0x04E5

Function: The system incorporates a trajectory generator, which performs calculations to determine the instantaneous position, velocity and acceleration of each axis at any given moment. During a motion profile, these values will change continuously. Once the move is complete, these parameters will then remain unchanged until the next move begins.

The specific move profile created by the system depends on several factors, such as the profile mode and profile parameters presently selected, and other conditions such as whether a motion stop has been requested. This method is used to set the profile mode to either 'Trapezoidal' or 'S-curve'.

SET:

Command structure (18 bytes) 6 byte header followed by 12 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
header						Data						
E3	04	0C	00	d	S	Chan Ident Mode Jerk						
-												
12	13	14	15	16	17							
	Data											

Jerk	Not Used	Not Used

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Mode	The channel being addressedThe move profile to be used:Trapezoidal: 0S-Curve: 2The Trapezoidal profile is a standard, symmetricalacceleration/deceleration motion curve, in which the startvelocity is always zero.The S-curve profile is a trapezoidal curve with an additional'Jerk' parameter, which limits the rate of change ofacceleration and smooths out the contours of the motion	word
	profile. In this profile mode, the acceleration increases gradually from 0 to the specified acceleration value, then decreases at the same rate until it reaches 0 again at the specified velocity. The same sequence in reverse brings the axis to a stop at the programmed destination position.	
Jerk	The Jerk value is specified in mm/s ³ in the Jerk parameter, and accepts values in the range 0 to 4294967295. It is used to specify the maximum rate of change in acceleration in a single cycle of the basic trapezoidal curve. 1.0 mm/s ³ is equal to 92.2337 jerk units.	dword
Not Used		word
Not Used		word

Example: Set the profile mode parameters for chan 2 as follows: Profile Mode: S-curve Jerk: 10,000 mm³

TX E3, 04, 0C, 00, A2, 01, 01, 00, 02, 00, E1, 12, 0E, 00, 00, 00, 00, 00,

Header: E3, 04, 0C, 00, A2, 01: Set ProfileModeParams, 0CH (12) byte data packet, Channel 2.

Chan Ident: 01, 00: Channel 1 (always set to 1 for BBD202) *Profile Mode: 02, 00*: Set the profile mode to S-Curve *Jerk*: E1, 12,0E, 00: Set the jerk value to 10,000 mm/sec³ (i.e. 922337)

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5
		head	ler only		
E4	04	Chan	00	d	S
		Ident			

GET:

Response structure (18 bytes) 6 byte header followed by 12 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header					Data					
E5	04	0C	00	d	S	Chan Ident		Mc	de	Je	rk

12	13	14	15	16	17						
Data											
Je	rk	Not	Used	Not Used							

MGMSG_MOT_SET_JOYSTICKPARAMS MGMSG_MOT_REQ_JOYSTICKPARAMS MGMSG_MOT_GET_JOYSTICKPARAMS

Function: The MJC001 joystick console has been designed for use by microscopists to provide intuitive, tactile, manual positioning of the stage. The console consists of a two axis joystick for XY control which features both low and high gear modes. This message is used to set max velocity and acceleration values for these modes.

SET:

Command structure (26 bytes)

6 byte header followed by 20 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
header						Data						
E6	6 04 14 00 d s Cha						han Ident JSGearLowMaxVel					
12	13	14	15	16	17	18	19	20	21	22	23	
	D											
J	JSGearHighMaxVel JSGearHi						n	15	GearHig	hHighAco	cn	

24	25
Da	ıta
DirSe	ense

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
JSGearLowMaxVel	Specifies the max velocity (in encoder counts/cycle) of a joystick move when low gear mode is selected. It accepts values in the range 0 to 4294967295. 1 mm / sec equals 134218 PMD units	long
JSGearHighMaxVel	Specifies the max velocity (in encoder counts/cycle) of a joystick move when high gear mode is selected. It accepts values in the range 0 to 4294967295. 1 mm / sec equals 134218 PMD units	long
JSGearLowAccn	Specifies the acceleration (in encoder counts/cycle) of a joystick move when low gear mode is selected. It accepts values in the range 0 to 4294967295. 1 mm /sec ² equals 13.7439 PMD units.	long
JSGearHighAccn	Specifies the acceleration (in encoder counts/cycle) of a joystick move when high gear mode is selected. It accepts values in the range 0 to 4294967295. 1 mm /sec ² equals 13.7439 PMD units.	long
DirSense	The actual direction sense of any joystick initiated move is dependent upon the application. This parameter can be used to reverse the sense of direction for a particular application and is useful when matching joystick direction sense to actual stage direction sense. DIRSENSE_POS 0X0001 Direction Positive DIRSENSE_NEG 0X0002 Direction Negative	word

0x04E6 0x04E7 0x04E8 Example: Set the joystick parameters for bay 2 as follows: JSGearLowMaxVel: 1 mm/sec JSGearHighMaxVel: 10 mm/sec JSGearLowAccn: 0.5 mm /sec² JSGearHighAccn: 5.0 mm /sec² DirSens: Positive

TX E6, 04, 14, 00, A2, 01, 01, 00, 4A, 0C, 02, 00, E4, 7A, 14, 00, 07, 00, 00, 00, 46, 00, 00, 01, 00

Header: E6, 04, 14, 00, A2, 01: SetJoystickParams, 14H (20) byte data packet, bay 2. Chan Ident: 01, 00: Channel 1 (always set to 1 for BBD202) JSGearLowMaxVel: 4A, 0C, 02, 00 (134218) JSGearHighMaxVel: E4, 7A, 14, 00 (1342180) JSGearLowAccn: 07, 00, 00, 00 (7.0) JSGearHighAccn: 46, 00, 00, 00 (70.0) DirSens: 01, 00

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5
		head	ler only		
E7	04	Chan	00	d	S
		Ident			

GET:

Response structure (26 bytes) 6 byte header followed by 20 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder					Da	ıta		
E8	04	14	00	d	S	Chan	Ident	J	SGearLo	wMaxVe	I
12	13	14	15	16	17	18	19	20	21	22	23
					D	ata					
J	SGearHig	ghMaxVe	el	J	SGearHig	nLowAccn JSGearHighHighAccn				cn	

24	25
Da	ıta
DirS	ense

MGMSG_MOT_SET_CURRENTLOOPPARAMS MGMSG_MOT_REQ_CURRENTLOOPPARAMS MGMSG_MOT_GET_CURRENTLOOPPARAMS

0x04D4 0x04D5 0x04D6

Function:Used to set the current control loop parameters for the specified
motor channel.

The motion processors within the BBD series controllers use digital current control as a technique to control the current through each phase winding of the motors. In this way, response times are improved and motor efficiency is increased. This is achieved by comparing the required (demanded) current with the actual current to create a current error, which is then passed through a digital PItype filter. The filtered current value is used to develop an output voltage for each motor coil.

This method sets various constants and limits for the current feedback loop.

SET:

Command structure (24 bytes)

6 byte header followed by 18 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header							Da	nta		
D4	04	12	00	d	S	Chan	Ident	Pha	ase	KpCu	rrent
12	13	14	15	16	17	18	19	20	21	22	23
					Da	nta					
KiCu	rrent	ILimC	urrent	Dead	Band	Kff ParamSetIx Not Used				Used	

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Phase	The current phase to set:	word
	PHASEA 0	
	PHASEB 1	
	PHASEA AND B 2	
KpCurrent	The proportional gain. Together with the KiCurrent this term	word
	determines the system response characteristics and accept	
	values in the range 0 to 32767.	
KiCurrent	The integral gain. Together with the KpCurrent this term	word
	determines the system response characteristics and accept	
	values in the range 0 to 32767.	
ILimCurrent	The ILimCurrent parameter is used to cap the value of the	word
	Integrator to prevent runaway of the integral sum at the	
	output. It accepts values in the range 0 to 32767. If set to 0	
	then the integration term in the PID loop is ignored.	
IDeadBand	The IDeadBand parameter allows an integral dead band to	word
	be set, such that when the error is within this dead band,	
	the integral action stops, and the move is completed using	
	the proportional term only. It accepts values in the range 0	

		1 1
	to 32767.	
Kff	The Kff parameter is a feed-forward term that is added to	word
	the output of the PID filter to assist in tuning the motor	
	drive signal. It accepts values in the range 0 to 32767.	
ParamSetIx	It is possible to enter a set of PID parameters for different	word
	operating scenarios, e.g. motor is stationary, motor is in	
	motion or not yet settled at target position. The specific set	
	of PID parameters to use when the function is called is set in	
	the ParamSetIx parameter as follows:	
	0 = Normal current loop parameter set (motor in motion, or	
	not yet settled at target position)	
	1 = Settled current loop parameter set (motor stationary,	
	settled at target position)	
	NOTE . This parameter is not applicable to BBD10x and	
	BBD20x units and in this case, the units use the values from	
	the last time the command was sent.	
Not Used		word

Example: Set the limit switch parameters for chan 2 as follows: Phase: A and B KpCurrent: 35 KiCurrent: 80 ILimCurrent: 32,767 DeadBand: 50 Kff: 0 ParamSetIx: 1

TX D4, 04, 12, 00, A2, 01, 01, 00, 02, 00, 23, 00, 50, 00, FF, 7F, 32, 00, 00, 00, 01, 00, 00, 00,

Header: D4, 04, 12, 00, A2, 01: Set_CurrentLoopParams, 18 byte data packet, Channel 2.
Chan Ident: 01, 00: Channel 1 (always set to 1 for BBD202)
Phase: 02, 00: Set Phase A and Phase B
KpCurrent: 23, 00,: Set the proportional term to 35
KiCurrent: 50, 00,: Set the integral term to 80
ILimCurrent: FF, 7F,: Set the integral limit to 32767
IDeadBand: 32, 00,: Set the deadband to 50
Kff: 00, 00: Set the feed forward value to zero
ParamSetIx: 01, 00 Use parameter set 1.

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5
		head	er only		
D8	04	Chan	00	d	S
		Ident			

GET:

Command structure (24 bytes) 6 byte header followed by 18 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header							Da	nta		
D6	04	12	00	d	S	Chan	Ident	Pha	ase	KpCu	rrent
12	13	14	15	16	17	18	19	20	21	22	23
					Da	nta					
KiCu	rrent	ILimC	urrent	Dead	Band	Kff Not Used Not Used				Used	

MGMSG_MOT_SET_SETTLEDCURRENTLOOPPARAMS0x04E9MGMSG_MOT_REQ_SETTLEDCURRENTLOOPPARAMS0x04EAMGMSG_MOT_GET_SETTLEDCURRENTLOOPPARAMS0x04EB

Function: These commands assist in maintaining stable operation and reducing noise at the demanded position. They allow the system to be tuned such that errors caused by external vibration and manual handling (e.g. loading of samples) are minimized, and are applicable only when the stage is settled, i.e. the Axis Settled status bit (bit 14) is set.

SET:

Command structure (24 bytes)

6 byte header followed by 18 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder					Da	ıta		
E9	04	12	00	d	S	Chan	Ident	Pha	ase	KpSe	ttled
12	13	14	15	16	17	18	19	20	21	22	23
					Do	ata					
KiSe	ttled	ILimS	ettled	DeadB	andSet	KffSettled Not Used Not Used				Used	

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Phase	The current phase to set:	word
	PHASEA 0	
	PHASEB 1	
	PHASEA AND B 2	
KpSettled	The proportional gain. Together with the KiSettled this	word
	term determines the system response characteristics and	
	accept values in the range 0 to 32767.	
KiSettled	The integral gain. Together with the KpSettled this term	word
	determines the system response characteristics and	
	accept values in the range 0 to 32767.	
ILimSettled	The ILimSettled parameter is used to cap the value of the	word
	Integrator to prevent runaway of the integral sum at the	
	output. It accepts values in the range 0 to 32767. If set to	
	0 then the integration term in the PID loop is ignored.	
IDeadBandSettled	The IDeadBandSettled parameter allows an integral dead	word
	band to be set, such that when the error is within this	
	dead band, the integral action stops, and the move is	
	completed using the proportional term only. It accepts	
	values in the range 0 to 32767.	
KffSettled	The KffSettled parameter is a feed-forward term that is	word
	added to the output of the PID filter to assist in tuning	
	the motor drive signal. It accepts values in the range 0 to	
	32767.	
Not Used		word
Not Used		word

Example: Set the limit switch parameters for chan 2 as follows: Phase: A and B KpSettled: 0 KiSettled: 40 ILimSettled: 30,000 DeadBandSettled: 50 KffSettled:500

TX E9, 04, 12, 00, A2, 01, 01, 00, 02, 00, 00, 00, 28, 00, 30, 75, 32, 00, F4, 01, 00, 00, 00, 00,

Header: D4, 04, 12, 00, A2, 01: Set_SettledCurrentLoopParams, 18 byte data packet, Channel 2.

Chan Ident: 01, 00: Channel 1 (always set to 1 for BBD202) Phase: 02, 00: Set Phase A and Phase B KpCurrent: 00, 00,: Set the proportional term to zero KiCurrent: 28, 00,: Set the integral term to 40 ILimCurrent: 30, 75,: Set the integral limit to 30,000 IDeadBand: 32, 00,: Set the deadband to 50 Kff: F4, 01: Set the feed forward value to 500

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5				
header only									
D8	04	Chan	00	d	S				
		Ident							

GET:

Command structure (24 bytes)

6 byte header followed by 18 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
	header					Data						
EB	04	12	00	d	S	Chan Ident Phase KpSettled				ttled		
12	13	14	15	16	17	18	19	20	21	22	23	
					Do	nta						
KiSe	ttled	ILimS	ettled	DeadB	andSet	KffSettled		KffSettled Not Us		Used	Not Used	

MGMSG_MOT_SET_STAGEAXISPARAMS MGMSG_MOT_REQ_STAGEAXISPARAMS MGMSG_MOT_GET_STAGEAXISPARAMS

0x04F0 0x04F1 0x04F2

Function:The REQ and GET commands are used to obtain various parameters
pertaining to the particular stage being driven. Most of these
parameters are inherent in the design of the stage and cannot be
altered. The SET command can only be used to increase the
Minimum position value and decrease the Maximum position value,
thereby reducing the overall travel of the stage.

SET:

Command structure (80 bytes)

6 byte header followed by 74 byte data packet – see Get for structure

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5				
header only									
F1	04	Chan	00	d	S				
		Ident							

GET:

Command structure (80 bytes) 6 byte header followed by 74 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
		hea	ıder					Do	ata			
F2	04	4A	00	d	S	Cha	n ID	Stag	ge ID	Axi	Axis ID	
12	13	14	15	16	17	18	19	20	21	22	23	
					Da	ıta						
					Part N	o/Axis						
24	25	26	27	28	29	30	31	32	33	34	35	
					Da	ıta						
	Part No/Axis				Serial N	lumber			Counts	per Unit		
				•								
36	37	38	39	40	41	42	43	44	45	46	47	
					Da	ıta						
	Min	Pos		Max Pos				Max	Accn			
48	49	50	51	52	53	54	55	56	57	58	59	
					Da	ıta						
	Max	Dec		Max Vel			Rese	erved	Rese	erved		
								•		•		
60	61	62	63	64	65	66	67	68	69	70	71	
					Da	ıta						
Rese	erved	Rese	rved		Rese	rved			Reserved			
								1				
72	73	74	75	76	77	78	79]				
			Do	ita								
	Rese	erved			Rese	rved						

Data Structure:

field	description	format
Stage ID	This 2 byte parameter identifies the stage and axis:	word
	00, 10 - MLS203_X_AXIS	
	00, 11 - MLS203_Y_AXIS	
AxisID	Not used for the BBD series controllers	word
PartNoAxis	A 16 byte character string used to identify the stage type	char
	and axis being driven.	
SerialNum	The Serial number of the stage	dword
CntsPerUnit	The number of encoder counts per real world unit (either mm or degrees).	dword
MinPos	The minimum position of the stage, typically zero	long
MaxPos	The maximum position of the stage in encoder counts	long
MaxAccn	The maximum acceleration of the stage in encoder counts	long
MaxAccii	per cycle per cycle	long
MaxDec	The maximum deceleration of the stage in encoder counts	long
	per cycle per cycle	
MaxVel	The maximum velocity of the stage in encoder counts per	long
	cycle.	
Reserved		word
Reserved		dword

Example: Get the stage and axis parameters for chan 2:

Header: F2, 04, 4A, 00, 81, 22: Get_StageAxisParams, 74 byte data packet,Bay 1. Chan Ident: 01, 00: Channel 1 (always set to 1 for BBD202) Stage ID: 11, 00: MLS203 Y Axis Axis ID: 00, 00,: Not used PartNo Axis: 4D, 4C, 53, 32, 30, 33, 20, 59, 20, 41, 78, 69, 73, 00, 00, 00,: M L S 2 0 3 Y A X I S SerialNum: 81, 96, 98, 00 CntsPerUnit 20, 4E, 00, 00: the encoder counts per unit is set to 20000 MinPos: 00, 00, 00, 00: the feed minimum position is set to zero MaxPos: 60, E3, 16, 00: the maximum position is set to 1500000 MaxAccn: 60, 6B, 00, 00: the maximum acceleration is set to 27488 MaxDec: 60, 6B, 00, 01: the maximum velocity is set to 26843546

MGMSG_MOT_SET_TSTACTUATORTYPE

Function:This command is for use only with the TST101 driver, and is used to
define an actuator type so that the TST driver knows the effective
length of the stage. This information is used if a user wishes to home
the stage to the far travel end. In this case, once the stage is homed
the Thorlabs Software GUI count will be set to the far travel value.
For example, in the case of a ZFS25 the user will see 25mm once
homed. The TST holds this value as a number of Trinamic
microsteps, which will be a function of the gearbox ratio, the lead
screw pitch, and the motor type. So for example the number stored
in the TST for the ZFS25 is 54613333.

SET:

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
FE	04	Actuator Ident	00	d	S		

Actuator Idents:

ZST_LEGACY_6MM	0x20
ZST_LEGACY_13MM	0x21
ZST_LEGACY_25MM	0x22
ZST_NEW_6MM	0x30
ZST_NEW_13MM	0x31
ZST_NEW_25MM	0x32
ZFS_NEW_6MM	0x40
ZFS_NEW_13MM	0x41
ZFS_NEW_25MM	0x42
DRV013_25MM	0x50
DRV014_50MM	0x51

Example: Set the actuator type to New ZFS 13 mm Travel:

Header: FE, 04, 31, 00, 50, 01:

0x04FE

MGMSG_MOT_GET_STATUSUPDATE

Function:This message is returned when a status update is requested for the
specified motor channel. This request can be used instead of
enabling regular updates as described previously. In the BSC series
controllers, each channel is seen as a separate controller with its
own serial number and each card must be addressed separately.

GET:

Status update messages are received with the following format:-

Response structure (34 bytes)

6 byte header followed by 28 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header					Data					
81	04	1C	00	d	S	Chan I	dent 1		Posi	ition	
12	13	14	15	16	17	18	19	20	21		
Data											
	EncC	ount			Statu	s Bits Chan Ident 2					
22	23	24	25	26	27	28	29	30	31	32	33
	Data										
	For Future Use For Fut				ure Use		For Future Use				

Data Structure:

field	description	format
Chan Ident	The channel being addressed is always P_MOD_CHAN1	word
	(0x01) encoded as a 16-bit word (0x01 0x00)	
Position	The position encoder count. In the Thorlabs Stepper Motor controllers the encoder resolution is 25,600 or 409600 counts per mm depending on the controller. Therefore a position change of 1 mm would be seen as this parameter changing by 25,600 or 409600. The LONG variable is a 32 bit value, encoded in the data stream in the Intel format.	long
EncCount	For use with encoded stages only.	long
Status Bits	The meaning of individual bits in this 32-bit variable is described in the bit mask table below (1 = active, 0 = inactive).	dword
All remaining b	ytes are for future use and should be ignored	

0x0481

Example: Get the status update:

Header: 81, 04, 1C, 00, 81, 50: Get_StatusUpdate, 28 byte data packet, Chan Ident: 01, 00: Channel 1 (always set to 1 for BSC20X) Position: 00, 00, 00, 00: Enc Counts: 00, 00, 00, 00: Only used with encoded stages Status Bits: 00, 00, 00, 00, See below for details,: All remaining bytes are ignored

Status Bits

bit mask	meaning
0x0000001	forward (CW) hardware limit switch is active
0x0000002	reverse (CCW) hardware limit switch is active
0x0000004	forward (CW) software limit switch is active
0x0000008	reverse (CCW) software limit switch is active
0x0000010	in motion, moving forward (CW)
0x0000020	in motion, moving reverse (CCW)
0x00000040	in motion, jogging forward (CW)
0x0000080	in motion, jogging reverse (CCW)
0x00000100	motor connected
0x00000200	in motion, homing
0x00000400	homed (homing has been completed)
0x00001000	interlock state (1 = enabled)

This is not full list of all the bits but the remaining bits reflect information about the state of the hardware that in most cases does not affect motion.

MGMSG_MOT_REQ_STATUSUPDATE

0x0480

Function:Used to request a status update for the specified motor channel.
This request can be used instead of enabling regular updates as
described above.

REQUEST: Command structure (6 bytes):

0	1	2	3	4	5			
header only								
80	04	Chan	00	d	S			
		Ident						

GET:

See previous details on MGMSG_MOT_GET_STATUSUPDATE 0x0481.

MGMSG_MOT_GET_USTATUSUPDATE

Function:This message is returned when a status update is requested for the
specified motor channel. This request can be used instead of
enabling regular updates as described above.

GET:

Status update messages are received with the following format:-

Response structure (20 bytes)

6 byte header followed by 14 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header					Data					
91	04	0E	00	d	S	Chan Ident Position					
12	13	14	15	16	17	18	19				
	Data										
Velo	ocity	Motor	Current		Status Bits						

Data Structure:

field	description	format
Chan Ident	The channel being addressed is always P_MOD_CHAN1 (0x01) encoded as a 16-bit word (0x01 0x00)	word
Position	The position in encoder counts (controller units). The relationship between the encoder count and physical units such as millimetres or degrees depends on both the controller and the stage. The conversion factors are listed in Section 8: "Conversion between position, velocity and acceleration values in standard physical units and their equivalent Thorlabs parameters". For example in the BBD20X series controllers used with the MLS203 stage, the encoder resolution is 20,000 counts per mm, therefore a position change of 1 mm would be seen as this parameter changing by 20,000 (twenty thousand). The LONG variable is a 32 bit value, encoded in the data stream in the Intel format, so for example a position of 1 million encoder counts (equivalent to 50 mm) would be sent as byte stream 0x40, 0x42, 0x0F, 0x00 since 1 million is hexadecimal 0xF4240.	long
Velocity	Actual velocity in controller units. As with position, relationship between this value and physical velocity depends on the motor and controller - see section 8 for the conversion factors. For example, this conversion factor is 204.8 for the BBD20X series controllers used with the MLS203 stage, so a real-life measured speed of 100 mm/sec is read as 205. Again, the two-byte data stream will be encoded in the Intel format.	word
Motor Current	Motor Current in mA (range -32768 to +32767). Note . Legacy controllers (i.e. those designed before-2020)	word

	do not return the motor current. In this case, this value is not used.	
Status Bits	The meaning of individual bits in this 32-bit variable is described below	dword

Status Bits Description

0x00000001 - P_MOT_SB_CWHARDLIMIT 0x00000002 - P_MOT_SB_CCWHARDLIMIT

Clockwise and counter-clockwise hardware limit switches. On linear stages these also correspond to the forward and reverse limit switches. (Due to the gearbox fitted in some linear stages, the clockwise and counter-clockwise directions may not match forward and reverse.)

0x00000004 - P_MOT_SB_CWSOFTLIMIT 0x00000008 - P_MOT_SB_CCWSOFTLIMIT Clockwise and counter-clockwise software limit switches. On some controllers a software limits can be imposed on the motion, restricting it to a narrower range than the hardware limit switches.

0x00000010 - P_MOT_SB_INMOTIONCW 0x00000020 - P_MOT_SB_INMOTIONCCW In motion, moving clockwise or counter-clockwise.

0x00000040 - P_MOT_SB_JOGGINGCW 0x00000080 - P_MOT_SB_JOGGINGCCW Jogging, clockwise or counter-clockwise.

0x00000100 - P_MOT_SB_CONNECTED Indicates that the motor has been recognized by the controller.

0x00000200 - P_MOT_SB_HOMING Indicates that the motor is performing a homing move.

0x00000400 - P_MOT_SB_HOMED

Indicates that the motor has completed the homing move, the absolute position is known and therefore the position count is now valid.

0x00000800 - P_MOT_SB_INITILIZING

For 3-phase brushless motors only: the motor is performing a phase initialization procedure, attempting to establish the correct commutation phase angle. This is an essential process for brushless motors and during this process no motion related command can be responded to.

0x00001000 - P_MOT_SB_TRACKING Actual position is within the trajectory tracking window.

0x00002000 - P_MOT_SB_SETTLED

Indicates that the motor is not moving and it is settled at the target position. The actual position has been within the target position for a specified length of time.

0x00004000 - P_MOT_SB_POSITIONERROR

Indicates that the actual position is outside the margin specified around the trajectory position. (In simple terms the motor is not where it should be.) This can occur momentarily during fast acceleration (the motor lags behind the trajectory) or when the motor is jammed, or the move is obstructed. Typically the condition can trigger the controller to disable the motor in order to prevent damage, which in turn will clear the error.

0x00008000 - P_MOT_SB_INSTRERROR

Only used on legacy controllers. Indicates that the motion controller unable to execute command received (for example, incompatible operating mode)

0x00010000 - P_MOT_SB_INTERLOCK

Used on controllers where there is a separate signal required to enable the motor.

0x00020000 - P_MOT_SB_OVERTEMP

Indicates that either the motor power driver electronics or the motor itself has reached its maximum operating temperature. Normally results in the motor drive getting disabled.

0x00040000 - P_MOT_SB_BUSVOLTFAULT

Indicates that the supply voltage to the motor is too low. Potential reasons include a power supply fault or wiring problem.

0x00080000 - P_MOT_SB_COMMUTATIONERROR

Only used for 3-phase brushless motors. Indicates a problem with the motor commutation and normally occurs if the phase initialization process has failed (see P_MOT_SB_INITILIZING). This is an unrecoverable fault that makes motion control impossible and can only be cleared by a power cycle.

0x00100000 - P_MOT_SB_DIGIP1

0x00200000 - P_MOT_SB_DIGIP2

0x00400000 - P_MOT_SB_DIGIP3

0x00800000 - P_MOT_SB_DIGIP4

Indicates the state of the digital inputs on those controllers with a limited small number of digital I/O lines. (If a controller has more than 4 digital inputs or if there are different configuration options, a separate command is used for reading the state of the input signals.)

0x01000000 - P_MOT_SB_OVERLOAD

Indicates a motor overload condition: can overcurrent condition (see P_MOT_SB_OVERCURRENT) has occurred for a long period of time and the motor has been used beyond its power handling capabilities. Normally results in the maximum output current being reduced or the motor being disabled.

0x02000000 - P_MOT_SB_ENCODERFAULT

Indicates an encoder fault in controllers that have encoder diagnostic capabilities (e.g. M30X, M30XY).

0x04000000 - P_MOT_SB_OVERCURRENT

Indicates that the motor current has exceeded the continuous current limit specified for the motor. This can occur temporarily during heavy load or fast acceleration conditions and under these circumstances it is normal (motors are normally tolerant of brief current spikes beyond their continuous rating). However, when it occurs over a sustained length of time, it can trigger a P_MOT_SB_OVERLOAD condition. 0x08000000 - P_MOT_SB_BUSCURRENTFAULT

Indicates that excessive current is being drawn from the motor power supply. This condition typically indicates a hard wiring fault that needs to be rectified, for example a phase-to-phase short circuit in a brushless motor.

0x1000000 - P_MOT_SB_POWEROK

Indicates that all the controller power supplies are operating normally.

0x20000000 - P_MOT_SB_ACTIVE Normally indicates that the controller is executing a motion command.

0x4000000 - P_MOT_SB_ERROR

Indicates an error condition, either listed above or arising as a result of another abnormal condition.

0x8000000 - P_MOT_SB_ENABLED

Indicates that the motor output is enabled and the controller is in charge of maintaining the required position. When the output is disabled, the motor is not controlled by the electronics and can be moved manually, as much as the mechanical construction (such as any leadscrew and gearbox fitted) allows. This is not full list of all the bits but the remaining bits reflect information about the state of the hardware that in most cases does not affect motion.

See the following table for a list of status bits and applicable controllers.

Bit	ntroller Status Bits Appl	TDC001	TBD001	KDC101	KBD101	M30X	M30XY	BBD20X	BBD30X
0x0000.0001	P_MOT_SB_CWHARDLIMIT	✓	✓	✓	 ✓ 	✓	 ✓ 	✓	✓
0x0000.0002	P_MOT_SB_CCWHARDLIMIT	✓	✓	 ✓ 	✓	✓	✓	✓	✓
0x0000.0004	P_MOT_SB_CWSOFTLIMIT	✓	•	 ✓ 	•	✓	✓	•	•
0x0000.0008	P_MOT_SB_CCWSOFTLIMIT	✓	•	✓	•	✓	 ✓ 	•	•
0x0000.0010	P_MOT_SB_INMOTIONCW	✓	✓	 ✓ 	✓	✓	✓	✓	✓
0x0000.0020	P_MOT_SB_INMOTIONCCW	✓	✓	 ✓ 	✓	✓	✓	✓	✓
0x0000.0040	P_MOT_SB_JOGGINGCW	✓	✓	✓	✓	✓	✓	✓	✓
0x0000.0080	P_MOT_SB_JOGGINGCCW	✓	✓	✓	✓	✓	✓	✓	✓
0x0000.0100	P_MOT_SB_CONNECTED	✓	•	✓	✓	✓	✓	•	✓
0x0000.0200	P_MOT_SB_HOMING	✓	✓	✓	✓	✓	✓	✓	✓
0x0000.0400	P_MOT_SB_HOMED	✓	✓	✓	✓	✓	✓	✓	✓
0x0000.0800	P_MOT_SB_INITILIZING	•	•	•	•	•	•	•	✓
0x0000.1000	P_MOT_SB_TRACKING	•	✓	•	•	•	•	✓	✓
0x0000.2000	P_MOT_SB_SETTLED	•	✓	•	•	•	•	✓	✓
0x0000.4000	P_MOT_SB_POSITIONERROR	•	✓	~	~	✓	~	✓	✓
0x0000.8000	P_MOT_SB_INSTRERROR	•	✓	•	•	•	•	✓	•
0x0001.0000	P_MOT_SB_INTERLOCK	•	✓	•	•	•	•	✓	✓
0x0002.0000	P_MOT_SB_OVERTEMP	•	✓	•	•	✓	✓	✓	✓
0x0004.0000	P_MOT_SB_BUSVOLTFAULT	•	✓	•	•	✓	✓	✓	✓
0x0008.0000	P_MOT_SB_COMMUTATIONERROR	•	✓	•	•	•	•	✓	✓
0x0010.0000	P_MOT_SB_DIGIP1	✓	✓	 ✓ 	✓	✓	✓	✓	•
0x0020.0000	P_MOT_SB_DIGIP2	•	•	✓	✓	✓	✓	•	•
0x0040.0000	P_MOT_SB_DIGIP3	•	•	•	•	•	•	•	•
0x0080.0000	P_MOT_SB_DIGIP4	•	•	•	•	•	•	•	•
0x0100.0000	P_MOT_SB_OVERLOAD	•	✓	•	✓	✓	✓	✓	✓
0x0200.0000	P_MOT_SB_ENCODERFAULT	•	•	•	•	✓	✓	•	•
0x0400.0000	P_MOT_SB_OVERCURRENT	•	•	•	•	✓	✓	•	✓
0x0800.0000	P_MOT_SB_BUSCURRENTFAULT	•	•	•	•	✓	✓	•	✓
0x1000.0000	P_MOT_SB_POWEROK	✓	•	•	~	✓	~	✓	✓
0x2000.0000	P_MOT_SB_ACTIVE	•	•	•	~	✓	~	•	✓
0x4000.0000	P_MOT_SB_ERROR	✓	✓	✓	•	✓	✓	✓	✓
0x8000.0000	P_MOT_SB_ENABLED	✓	✓	✓	✓	✓	✓	✓	✓
wMotorCurrent p	L parameter is used and the data is valid	•	•	•	•	×	v		~

Motor Controller Status Bits Applicable

MGMSG_MOT_REQ_USTATUSUPDATE

Function:Used to request a status update for the specified motor channel.This request can be used instead of enabling regular updates as
described above.

REQUEST: Command structure (6 bytes):

0	1	2	3	4	5			
header only								
90	04	Chan	00	d	S			
		Ident						

GET:

See previous details on MGMSG_MOT_GET_USTATUSUPDATE 0x0491.

MGMSG_MOT_ACK_USTATUSUPDATE

0x0492

0x0490

Only Applicable If Using USB COMMS. Does not apply to RS-232 COMMS

Function:If using the USB port, this message called "server alive" must be sent
by the server to the controller at least once a second or the
controller will stop responding after ~50 commands.
The controller keeps track of the number of "status update" type of
messages (e.g., move complete message) and it if has sent 50 of
these without the server sending a "server alive" message, it will
stop sending any more "status update" messages.
This function is used by the controller to check that the PC/Server
has not crashed or switched off. There is no response.

Structure (6 bytes):

0	1	2	3	4	5		
header only							
92	04	00	00	d	S		

TX 92, 04, 00, 00, 21, 01

MGMSG_ MOT_REQ_STATUSBITS **MGMSG_** MOT_GET_STATUSBITS

0x0429 0x042A

Function:Used to request a "cut down" version of the status update message,
only containing the status bits, without data about position and
velocity.

SET: N/A

REQUEST: Command structure (6 bytes):

0	1	2	3	4	5			
header only								
29	04	Chan	00	d	S			
		Ident						

GET:

Response structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header					Data					
2A	04	06	00	d	S	Chan	Ident	Status Bits			

Data Structure:

field	description	format
Chan Ident	The channel being addressed	Word
Status Bits	The status bits are assigned exactly as described in the section detailing the MGMSG_MOT_GET_DCSTATUSUPDATE command.	DWord

MGMSG_MOT_SUSPEND_ENDOFMOVEMSGS

0x046B

Function:Sent to disable all unsolicited end of move messages and error
messages returned by the controller, i.e.

MGMSG_MOT_MOVE_STOPPED MGMSG_MOT_MOVE_COMPLETED MGMSG_MOT_MOVE_HOMED

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
6B	04	00	00	d	S		

MGMSG_MOT_RESUME_ENDOFMOVEMSGS

0x046C

Function:Sent to resume all unsolicited end of move messages and error
messages returned by the controller, i.e.

MGMSG_MOT_MOVE_STOPPED MGMSG_MOT_MOVE_COMPLETED MGMSG_MOT_MOVE_HOMED

The command also disables the error messages that the controller sends when an error conditions is detected:

MGMSG_HW_RESPONSE MGMSG_HW_RICHRESPONSE

This is the default state when the controller is powered up.

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
6C	04	00	00	d	S		

Issue 40

MGMSG_MOT_SET_TRIGGER	0x0500
MGMSG_MOT_REQ_TRIGGER	0x0501
MGMSG_MOT_GET_TRIGGER	0x0502

Function:This message is used to configure the Motor controller for triggered
move operation. It is possible to configure a particular controller to
respond to trigger inputs, generate trigger outputs or both respond
to and generate a trigger output. When a trigger input is received,
the unit can be set to initiate a move (relative, absolute or home).
Similarly the unit can be set to generate a trigger output signal when
a specified event (e.g move initiated) occurs. For those units
configured for both input and output triggering, a move can be
initiated via a trigger input while at the same time, a trigger output
can be generated to initiate a move on another unit.
The trigger settings can be used to configure multiple units in a
master – slave set up, thereby allowing multiple channels of motion
to be synchronized. Multiple moves can then be initiated via a single
software or hardware trigger command.

SET:

Command structure (6 bytes):

0	1	2	3	4	5			
header only								
00	05	Chan	Mode	d	S			
		Ident						

Note. This message operates differently when used with brushless DC controllers (e.g. BBD20x and TBD001) as opposed to other motor controllers as described in the following paragraphs.

All benchtop stepper controllers (BSC20x,)

field	description	format
Chan Ident	The channel being addressed	char
Mode	This parameter sets the trigger mode and move type to be	char
	initiated according to the numerical value entered in bits 0 to	
	7 as follows	
	Bit 0 (0x01): TRIGIN_ENABLE set to enable physical trigger	
	input	
	Bit 1 (0x02): TRIGOUT_ENABLE set to enable trigger output	
	function (mode set by BIT2 or BIT3 below)	
	Bit 2 (0x04): TRIGOUT_MODEFOLLOW set to enable physical	
	trigger output to mirror trig in	
	Bit 3 (0x08): TRIGOUT_MODEMOVEEND set to enable	
	physical trigger output, remains active (high) until move end	
	Bit 4 (0x10): TRIG_RELMOVE set for relative move on trigger	
	Bit 5 (0x20): TRIG_ABSMOVE set for absolute move on	
	trigger	
	Bit 6 (0x40): TRIG_HOMEMOVE set for home sequence on	
	trigger	

Bit 7 (0x80): TRIGOUT_NOTRIGIN set to enable physical	
trigger output with no physical trigger in (i.e. sw initiated	
trigger)	

Brushless DC controllers only (BBD20x, BBD30x and TBD001)

Chan IdentThe channel being addressedModeThis parameter sets the trigger mode and move type according to the numerical value entered in bits 0 to 7 as	
	char
 follows Bit 0 (0x01): TRIGIN_HIGH The Trigger input can be configured to initiate a relative, absolute or homing home, either on the rising or falling edge of the signal driving it. As the trigger input is edge sensitive, it needs to see a logic LOW to HIGH transition ("rising edge") or a logic HIGH to LOW transition ("falling edge") for the move to be started. Additionally, the move parameters must be downloaded to the unit prior to the move using the relevant relative move or absolute move methods as described below. A move already in progress will not be interrupted; therefore external triggering will not work until the previous move has been completed. If this bit is set, the logic state is set HIGH. Bit 1 (0x02): TRIGIN_RELMOVE set to enable trigger in and initiate a relative move (specified using the latest MoveRelative or MoveRelativeEx settings) when a trigger input signal is received. Bit 2 (0x04): TRIGIN_ABSMOVE set to enable trigger in and initiate an absolute move (specified using the latest MoveAbsolute or MoveAbsoluteEx settings) when a trigger input signal is received. Bit 3 (0x08): TRIGIN_HOMEMOVE set to enable trigger in and initiate an absolute move (specified using the latest MoveAbsolute or MoveAbsoluteEx settings) when a trigger input signal is received. Bit 4 (0x10): TRIGOUT_HIGH The Trigger output can be configured to be asserted to either logic HIGH or LOW as a function of certain motion-related conditions, such as when a move is in progress (In Motion), complete (Move Complete) or reaches the constant velocity phase on its trajectory (Max Vel). The logic state of the output will remain the same for as long as the chosen condition is true. If this bit is set, the logic state is set HIGH when the following conditions are true. Bit 5 (0x20): TRIGOUT_INMOTION set to enable trigger out (triggered when in motion) 	char

Example: Set the trigger mode for channel 1 of the BBD201 controller as follows: Trigger Input Rising Edge (High) Enable trigger input and initiate a Relative Move Trigger Output Rising Edge (High) Enable trigger output when move complete.

TX 00, 05, 01, 53, 50, 01

00,05 SET_TRIGGER 01, Channel 1 53, i.e. 01010011 50, destination Generic USB device 01, Source PC

REQ:

Command structure (6 bytes):

0	1	2	3	4	5						
	header only										
01	05	Chan	00	d	S						
		Ident									

Example:

Request the trigger mode

TX 01, 05, 01, 00, 50, 01

GET: Response structure (6 bytes):

0	1	2	3 4		5					
hea	header only									
02	05	Chan	Mode	d	S					
		Ident								

MGMSG_MOT_SET_KCUBEMMIPARAMS MGMSG_MOT_REQ_KCUBEMMIPARAMS MGMSG_MOT_GET_KCUBEMMIPARAMS

0x0520 0x0521 0x0522

This message is applicable only to KST101, KDC101, KBD101 and BBD30x units

Function:This message is used to configure the operating parameters of the
top panel wheel (Joystick).

SET

Command structure (42 bytes)

6 byte header followed by 36 byte data packet.

		-	_			-		-	-	-	
0	1	2	3	4	5	6	7	8	9	10	11
	header							D	ata		
20	05	1C	00	d	S	Char	n Ident	JSM	lode	JSMa	ixVel
12	13	14	15	16	17	18	19	20	21	22	23
					Dat	а					
JSMa	JSMaxVel		JSA	Accn		Dir	DirSense PreSetPos1				
L								•			
24	25	26	27	28	29	30	31	32	33		
			Date	a							
	PreSetPos2			DispBr	ightness	DispT	imeout	DispDi	mLevel		
				•							
34	35	36	37	38	39	40	41				
			Da	ıta							
	PreSe	tPos3		JSSer	nsitivity	Reserved					

Data Structure:

field	description	format
Chan Ident	The channel being addressed is always P_MOD_CHAN1	word
	(0x01) encoded as a 16-bit word (0x01 0x00)	
JSMode	 This parameter specifies the operating mode of the wheel/joy stick as follows: 1 Velocity Control Mode - Deflecting the wheel starts a move with the velocity proportional to the deflection. The maximum velocity (i.e. velocity corresponding to the full deflection of the joystick wheel) and acceleration are specified in the MaxVel and MaxAccn parameters. 2 Jog Mode - Deflecting the wheel initiates a jog move, using the parameters specified by the SetJogStepSize and SetJogVelParams methods. Keeping the wheel deflected repeats the move automatically after the current move has completed. 3 Go To Position Mode - Deflecting the wheel starts a move from the current position to one of the two predefined "teach" positions. The teach positions are specified in number of steps from the home position in the PresetPos1 and PresetPos2 parameters. 	word
JSMaxVel	The max velocity of a move initiated by the top panel	long

	velocity wheel.	
JSAccn	The max acceleration of a move initiated by the top panel	long
	velocity wheel	0
DirSense	This parameter specifies the direction of a move initiated by	word
	the velocity wheel as follows:	
	0 Wheel initiated moves are disabled. Wheel used for	
	menuing only.	
	1 Upwards rotation of the wheel results in a positive	
	motion (i.e. increased position count).	
	The following option applies only when the JSMode is set to	
	Velocity Control Mode (1). If set to Jog Mode (2) or Go to	
	Position Mode (3), the following option is ignored.	
	2 Upwards rotation of the wheel results in a negative	
	motion (i.e. decreased position count).	
PresetPos1	The preset position 1 when operating in go to position	long
	mode, measured in position steps from the home position.	
PresetPos2	The preset position 2 when operating in go to position	long
	mode, measured in position steps from the home position.	
DispBrightness	In certain applications, it may be necessary to adjust the	word
	brightness of the LED display on the top of the unit. The	
	brightness is set as a value from 0 (Off) to 100 (brightest).	
	The display can be turned off completely by entering a	
	setting of zero, however, pressing the MENU button on the	
	top panel will temporarily illuminate the display at its	
	lowest brightness setting to allow adjustments. When the	
	display returns to its default position display mode, it will	
	turn off again.	
DispTimeout	'Burn In' of the display can occur if it remains static for a	word
	long time. To prevent this, the display is automatically	
	dimmed after the time interval specified in the DispTimeout	
	parameter has elapsed. Set in minutes in the range 0 (never	
	dimmed) to 480.	
	The dim level is set in the DispDimLevel parameter below.	
DispDimLevel	The dim level, as a value from 0 (Off) to 10 (brightest) but is	word
	also limited by the DispBrightness parameter.	
PresetPos3	Applicable to BBD30x Only. The preset position 3 when	long
	operating in go to position mode, measured in position	
	steps from the home position.	
wJSSensitivity	Applicable to BBD30x Only. Joystick sensitivity 0 to 65535	word
	representing zero to maximum sensitivity	
wReserved		word

REQ:

Command structure (6 bytes):

0	1	2	3	4	5					
	header only									
21	05	Chan Ident	00	d	S					

Example:

Request the settings for the top panel wheel

TX 21, 05, 01, 00, 50, 01

GET:

Response structure (6 bytes):

		-	-		_	<i>c</i>	_	-		1.0	
0	1	2	3	4	5	6	7	8	9	10	11
	header							Do	ata		
22	05	1C	00	d	S	Chan	Ident	JSIV	lode	JSMa	axVel
12	13	14	15	16	17	18	19	20	21	22	23
					Dat	a					
JSMa	ixVel		JSA	ccn		DirSe	ense		PreS	etPos1	
								•			
24	25	26	27	28	29	30	3	1	32	33	
			Date	a							
	PreSe	tPos2		DispBr	ightness	Dis	pTimeou	ıt	DispDim	Level	
34	35	36	37	38	39	40	41				
			Da	ıta							
	PreSe	tPos3		JSSer	nsitivity	Reserved					

MGMSG_MOT_SET_KCUBETRIGIOCONFIG MGMSG_MOT_REQ_KCUBETRIGIOCONFIG MGMSG_MOT_GET_KCUBETRIGIOCONFIG

This message is applicable only to KST101, KDC101 and KBD101 units

Function: The K-Cube motor controllers have two bidirectional trigger ports (TRIG1 and TRIG2) that can be used to read an external logic signal or output a logic level to control external equipment. Either of them can be independently configured as an input or an output and the active logic state can be selected High or Low to suit the requirements of the application. Electrically the ports output 5 Volt logic signals and are designed to be driven from a 5 Volt logic. When the port is used in the input mode, the logic levels are TTL compatible, i.e. a voltage level less than 0.8 Volt will be recognised as a logic LOW and a level greater than 2.4 Volt as a logic HIGH. The input contains a weak pull-up, so the state of the input with nothing connected will default to a logic HIGH. The weak pull-up feature allows a passive device, such as a mechanical switch to be connected directly to the input. When the port is used as an output it provides a push-pull drive of 5 Volts, with the maximum current limited to approximately 8 mA. The current limit prevents damage when the output is accidentally shorted to ground or driven to the opposite logic state by external circuity.

Warning: do not drive the TRIG ports from any voltage source that can produce an output in excess of the normal 0 to 5 Volt logic level range. In any case the voltage at the TRIG ports must be limited to -0.25 to +5.25 Volts.

SET

Command structure (28 bytes)

6 byte header followed by 22 byte data packet.

0	1	2	3	4	5	6	7	8	9	10	11	
	header							Data				
23	05	0C	00	d	S	Chan Ident Trig1Mode Trig1Polar				olarity		
12	13	14	15	16	17	18 to 28						
					l	Data						
Trig2	Mode	Trig2P	olarity	Rese	erved	Reserved						

Data Structure:

field	description	format
Chan Ident	The channel being addressed is always P_MOD_CHAN1	word
	(0x01) encoded as a 16-bit word (0x01 0x00)	
Trig1Mode	TRIG1 operating mode	word
Trig1Polarity	The active state of TRIG1 (i.e. logic high or logic low) I.	word
Trig2Mode	TRIG2 operating mode	word
Trig2Polarity	The active state of TRIG2 (i.e. logic high or logic low)	word
Reserved	Bytes 16 to 28	word

Input Trigger Modes

When configured as an input, the TRIG ports can be used as a general purpose digital input, or for triggering a relative, absolute or home move as follows:

- 0x00 The trigger IO is disabled
- 0x01 General purpose logic input (read through status bits using the
- MOT_GET_STATUSBITS message).
- 0x02 Input trigger for relative move.
- 0x03 Input trigger for absolute move.
- 0x04 Input trigger for home move.

When used for triggering a move, the port is edge sensitive. In other words, it has to see a transition from the inactive to the active logic state (Low->High or High->Low) for the trigger input to be recognized. For the same reason a sustained logic level will not trigger repeated moves. The trigger input has to return to its inactive state first in order to start the next trigger.

Output Trigger Modes

When configured as an output, the TRIG ports can be used as a general purpose digital output, or to indicate motion status or to produce a trigger pulse at configurable positions as follows:

0x0A General purpose logic output (set using the MOD_SET_DIGOUTPUTS message). 0x0B Trigger output active (level) when motor 'in motion'. The output trigger goes high (5V) or low (0V) (as set in the ITrig1Polarity and ITrig2Polarity parameters) when the stage is in motion.

0x0C Trigger output active (level) when motor at 'max velocity'.

0x0D Trigger output active (pulsed) at pre-defined positions moving forward (set using StartPosFwd, IntervalFwd, NumPulsesFwd and PulseWidth parameters in the <u>SetKCubePosTrigParams</u> message). Only one Trigger port at a time can be set to this mode. 0x0E Trigger output active (pulsed) at pre-defined positions moving backwards (set using StartPosRev, IntervalRev, NumPulsesRev and PulseWidth parameters in the <u>SetKCubePosTrigParams</u> message). Only one Trigger port at a time can be set to this mode. 0x0F Trigger output active (pulsed) at pre-defined positions moving forwards and backward. Only one Trigger port at a time can be set to this mode.

Trigger Out Position Steps

In the last three modes described above, the controller outputs a configurable number of pulses, of configurable width, when the actual position of the stage matches the position values configured as the Start Position and Position Interval - see <u>SetKCubePosTrigParams</u> message. These modes allow external equipment to be triggered at exact position values. The position pulses are generated by dedicated hardware, allowing a very low latency of less than 1 usec. The low latency of this triggering mode provides a very precise indication of a position match (assuming a stage velocity of 10 mm/sec, the less than 1 usec latency would in itself only result in a 10 nm position uncertainty, which is normally well below the accuracy limitations of the mechanics.)

Using the last three modes above, position triggering can be configured to be unidirectional (forward or reverse only) or bidirectional (both). In bidirectional mode the forward and reverse pulse sequences can be configured separately. A cycle count setting (set in the SetKCubePosTrigParams message, INumCycles parameter) allows the uni- or bidirectional position triggering sequence to be repeated a number of times.

Example for a move from 0 to 20 mm and back.

In forward direction: The first trigger pulse occurs at 10 mm (StartPosFwd), the next trigger pulse occurs after another 5 mm (PosIntervalFwd), the stage then moves to 20 mm.

In reverse direction: The next trigger occurs when the stage gets to 12 mm.

Please note that position triggering can only be used on one TRIG port at a time, as there is only one set of position trigger parameters.

The operation of the position triggering mode is described in more detail in the SetKCubePosTriggerParams method.

REQ:

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
24	05	Chan	00	d	S		
		Ident					

Example:

Request the settings for the top panel wheel

TX 24, 05, 01, 00, 50, 01

GET:

Response structure (18 bytes): 6 byte header followed by 12 byte data packet.

0	1	2	3	4	5	6	7	8	9	10	11
	header						Data				
25	05	0C	00	d	S	Chan	Ident	Trig1I	Vode	Trig1Polarity	

12	13	14 15		16	17	
Data						
Trig2Mode		Trig2P	olarity	Reserved		

MGMSG_MOT_SET_KCUBEPOSTRIGPARAMS MGMSG_MOT_REQ_KCUBEPOSTRIGPARAMS MGMSG_MOT_GET_KCUBEPOSTRIGPARAMS

This message is applicable only to KST101, KDC101 and KBD101 units

Function:The K-Cube motor controllers have two bidirectional trigger
ports (TRIG1 and TRIG2) that can be set to be used as input or
output triggers. This method sets operating parameters used
when the triggering mode is set to a trigger out position steps
mode by calling the SetKCubeTriglOConfig message.

As soon as position triggering is selected on either of the TRIG ports, the port will assert the inactive logic state. As the stage moves in its travel range and the actual position matches the position set in the StartPosFwd parameter, the TRIG port will output its active logic state. The active state will be output for the length of time specified by the PulseWidth parameter, then return to its inactive state and schedule the next position trigger point at the "StartPosFwd value plus the value set in the fPosIntervalFwd parameter. Thus when this second position is reached, the TRIG output will be asserted to its active state again. The sequence is repeated the number of times set in the NumPulsesFwd parameter.

When the number of pulses set in the NumPulsesFwd parameter has been generated, the trigger engine will schedule the next position to occur at the position specified in the StartPosRev parameter. The same sequence as the forward direction is now repeated in reverse, except that the PosIntervalRev and NumPulsesRev parameters apply. When the number of pulses has been output, the entire forwardreverse sequence will repeat the number of times specified by NumCycles parameter. This means that the total number of pulses output will be NumCycles x (NumPulsesFwd + NumPulsesRev).

Once the total number of output pulses have been generated, the trigger output will remain inactive.

When a unidirectional sequence is selected, only the forward or reverse part of the sequence will be activated.

Example for a move from 0 to 20 mm and back.

In forward direction: The first trigger pulse occurs at 10 mm (StartPosFwd), the next trigger pulse occurs after another 5 mm (PosIntervalFwd), the stage then moves to 20 mm.

In reverse direction: The next trigger occurs when the stage gets to 12 mm. Note that the position triggering scheme works on the principle of always triggering at the next scheduled position only, regardless of the actual direction of movement. If, for example, a position trigger sequence is set up with the forward start position at 10 mm, but initially the stage is at 15 mm, the first forward position trigger will occur when the stage is moving in the reverse direction. Likewise, if the stage does not complete all the forward position trigger points, the reverse triggering will not activate at all. For normal operation it is assumed that all trigger points will be reached during the course of the movement.

SET

Command structure (40 bytes)

6 byte header followed by 34 byte data packet.

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ider								
26	05	22	00	d	S	Chan	Ident		StartP	osFwd	
12	13	14	15	16	17	18	19	20	21	22	23
					Da	ata					
	Interv	alFwd			NumPulsesFwd				StartF	PosRev	

24	25	26	27	28	29	30	31	32	33	34	35
	Data										
	IntervalRev NumPulsesRev									Width	

36	37	38	39
	Da	nta	
	Num(Cycles	

Data Structure:

field	description	format
Chan Ident	The channel being addressed is always P_MOD_CHAN1	word
	(0x01) encoded as a 16-bit word (0x01 0x00)	
StartPosFwd -	When moving forward, this is the stage position [in position	long
	counts - encoder counts or microsteps] to start the	
	triggering sequence.	
IntervalFwd	When moving forward, this is the interval [in position	long
	counts - encoder counts or microsteps] at which to output	
	the trigger pulses.	
NumPulsesFwd	Number of output pulses during a forward move.	long
StartPosRev -	When moving backwards, this is the stage position [in	long
	position counts - encoder counts or microsteps] to start the	
	triggering sequence.	
IntervalRev	When moving backwards, this is the interval [in position	long
	counts - encoder counts or microsteps] at which to output	
	the trigger pulses.	
NumPulsesRev	Number of output pulses during a backwards move.	long
PulseWidth	Trigger output pulse width (from 1 μ s to 1000000 μ s).	long
NumCycles	Number of forward/reverse move cycles.	long

REQ:

Command structure (6 bytes):

0	1	2	3	4	5
		head	ler only		
27	05	Chan Ident	00	d	S

Example:

Request the settings for the top panel wheel

TX 27, 05, 01, 00, 50, 01

GET:

Response structure (40 bytes):

6 byte header followed by 34 byte data packet.

0	1	2	3	4	5	6	7		8	9	10	11
		hea	der						Do	nta		
28	05	22	00	d	S	Chan	Ident			StartP	osFwd	
12	13	14	15	16	17	18	19	20	21	22	23	
					Da	nta						
	Interv	alFwd			NumPu	lsesFwd	StartPosRev					

24	25	26	27	28	29	30	31	32	33	34	35
	Data										
IntervalRev NumPulsesRev									Pulse	Width	

36	37	38	39					
Data								
	Interv	alFwd						

For structure see SET message above.

MGMSG_MOT_SET_KCUBEKSTLOOPPARAMS MGMSG_MOT_REQ_KCUBEKSTLOOPPARAMS MGMSG_MOT_GET_KCUBEKSTLOOPPARAMS

0x0529 0x052A 0x052B

This message is applicable only to KST101 and BSC20X units

Function: Used to set the position control loop parameters for the specified motor channel. The motion processor within the controller uses a position control loop to determine the motor command output. The purpose of the position loop is to match the actual motor position and the demanded position. This is achieved by comparing the demanded position with the actual position to create a position error, which is then passed through a digital PID-type filter. The filtered value is the motor command output.

SET:

Command structure (42 bytes)

6 byte header followed by 36 byte data packet as follows:

	4	2	2	4	-	<i>с</i>	7	0	0	10	44	40	40	1	
0	1	2	3	4	5	6	/	8	9	10	11	12	13		
		hea	ider						Da	ıta					
29	05	24	00	d	S	Chan	Ident	Loopl	Vode		Pr	ор			
												_			
14	15	16	17	18	19	20	21	22	23	24	25				
					Da	ıta									
	I	nt			Deriv	ative			PID	Clip					
												-			
26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41
							Dat	ta							
	PIC	Tol			Encode	erConst					Not L	Jsed			

field	description	format
Chan Ident	The channel being addressed	word
LoopMode	Sets Open or Closed Loop as follows:	word
	1 Open Loop 2 Closed Loop	
Prop	The proportional gain. Together with the Integral and	long
	Derivative, these terms determine the system response	
	characteristics and accept values in the range 0 to 16777216.	
Int	The integral gain. Together with the Proportional and	long
	Derivative, these terms determine the system response	
	characteristics and accept values in the range 0 to 16777216.	
Derivative	The derivative gain. Together with the Proportional and	long
	Integral, these terms determine the system response	
	characteristics and accept values in the range 0 to 16777216.	
PIDClip	The PIDClip parameter is used to cap the value of the PID	long
	loop to prevent runaway at the output. It accepts values in	
	the range 0 to 16777216. If set to 0 then the output of the	
	PID loop is ignored.	
PIDTol	Value below which the output of PID generator is effectively	long

	deemed to be zero to avoid continual cycle about set point	
EncoderConst	This is a conversion factor from Encoder counts to	DWord
	microsteps. If set to 0, then no encoder is fitted to the stage.	

Example: Set the PID parameters as follows: Loop Mode: Closed Loop Prop: 20000 Int: 1000 Derivative: 100 PIDClip: 100,000 PidTol: 200 EncoderConst: 4292282941 (see note below

Header: 29, 05, 24, 00, D0, 01: Set_KCubeKSTLoopParams, 36 byte data packet, Generic USB Device.

Chan Ident: 01, 00: Channel 1 (always set to 1 for BSC201) *LoopMode: 02, 00 : Closed Loop Prop: 20, 4E, 00, 00*: Set the proportional term to 20000 *Int: E8, 03,:* Set the integral term to 1000 *Derivative*: 64, 00,: Set the derivative term to 100 *PIDClip*: 00, E1, F5, 05,: Set the integral limit to 100,000,000 *PIDTol*: C8, 00, 00, 00 *EncoderConstl*: C3, F5, 28, 00, : Set the Enccoder Constant to 4292282941.

Note. Calculating the EncoderConst Value

Each stage has a specific constant for converting encoder counts to microsteps. For the LNR50SE stage, this value is 4292282941.

For example Encoder resolution = 100 nm Stepper resolution = 409600 microsteps/turn/mm = 2.44 nm per step Therefore no. of μ steps per encoder count = 100 nm/2.44 = 40.96.

The chip inside the controller uses 16.16 bit format, where 16 bits represent the integer and 16 bit are for the fraction.

 Interger part
 40 = Hex28 = 0X0028

 Fraction part
 0.96/1/65536 = 62914.56 = F5C3

 Therefore EncoderConst value = **0028F5C3**

For negative values, we must find the 2s compliment value...

28F5C3 = 0000 0000 0010 1000.1111 0101 1100 0011 2s comp = 1111 1111 1101 0111.0000 1010 0011 1100 + 1 = **FFD7.0A3D**

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5
		head	ler only		
2A	05	Chan	00	d	S
		Ident			

GET:

6 byte header followed by 30 byte data packet as follows:

header Da	nta
2B 05 24 00 d s Chan Ident LoopMode	Prop

14	15	16	17	18	19	20	21	22	23	24	25
	Data										
Int Derivative PID								Clip			

26	27	28	33	34	35						
	Data										
	PID	Tol			Encode	erConst		Not Used			

For structure see Set message above.

MGMSG_MOT_SET_KCUBEPOSTRIGPARAMS MGMSG_MOT_REQ_KCUBEPOSTRIGPARAMS MGMSG_MOT_GET_KCUBEPOSTRIGPARAMS

This message is applicable only to KST101, KDC101 and KBD101 units

Function:The K-Cube motor controllers have two bidirectional trigger
ports (TRIG1 and TRIG2) that can be set to be used as input or
output triggers. This method sets operating parameters used
when the triggering mode is set to a trigger out position steps
mode by calling the SetKCubeTriglOConfig message.

As soon as position triggering is selected on either of the TRIG ports, the port will assert the inactive logic state. As the stage moves in its travel range and the actual position matches the position set in the StartPosFwd parameter, the TRIG port will output its active logic state. The active state will be output for the length of time specified by the PulseWidth parameter, then return to its inactive state and schedule the next position trigger point at the "StartPosFwd value plus the value set in the fPosIntervalFwd parameter. Thus when this second position is reached, the TRIG output will be asserted to its active state again. The sequence is repeated the number of times set in the NumPulsesFwd parameter.

When the number of pulses set in the NumPulsesFwd parameter has been generated, the trigger engine will schedule the next position to occur at the position specified in the StartPosRev parameter. The same sequence as the forward direction is now repeated in reverse, except that the PosIntervalRev and NumPulsesRev parameters apply. When the number of pulses has been output, the entire forwardreverse sequence will repeat the number of times specified by NumCycles parameter. This means that the total number of pulses output will be NumCycles x (NumPulsesFwd + NumPulsesRev).

Once the total number of output pulses have been generated, the trigger output will remain inactive.

When a unidirectional sequence is selected, only the forward or reverse part of the sequence will be activated.

Example for a move from 0 to 20 mm and back.

In forward direction: The first trigger pulse occurs at 10 mm (StartPosFwd), the next trigger pulse occurs after another 5 mm (PosIntervalFwd), the stage then moves to 20 mm.

In reverse direction: The next trigger occurs when the stage gets to 12 mm. Note that the position triggering scheme works on the principle of always triggering at the next scheduled position only, regardless of the actual direction of movement. If, for example, a position trigger sequence is set up with the forward start position at 10 mm, but initially the stage is at 15 mm, the first forward position trigger will occur when the stage is moving in the reverse direction. Likewise, if the stage does not complete all the forward position trigger points, the reverse triggering will not activate at all. For normal operation it is assumed that all trigger points will be reached during the course of the movement.

SET

Command structure (40 bytes)

6 byte header followed by 34 byte data packet.

0	1	2	3	4	5	6	7	8	9	10	11		
		hea	ıder				Data						
26	05	22	00	d	S	Chan	Ident		StartP	osFwd			
12	13	14	15	16	17	18	19	20	21	22	23		
					Da	ata							
	IntervalFwd NumP								StartF	PosRev			

24	25	26	27	28	29	30	31	32	33	34	35
	Data										
IntervalRev NumPulsesRev PulseWidth											

36	37	38	39					
	Num(Cycles						

Data Structure:

field	description	format
Chan Ident	The channel being addressed is always P_MOD_CHAN1	word
	(0x01) encoded as a 16-bit word (0x01 0x00)	
StartPosFwd -	When moving forward, this is the stage position [in position	long
	counts - encoder counts or microsteps] to start the	
	triggering sequence.	
IntervalFwd	When moving forward, this is the interval [in position	long
	counts - encoder counts or microsteps] at which to output	
	the trigger pulses.	
NumPulsesFwd	Number of output pulses during a forward move.	long
StartPosRev -	When moving backwards, this is the stage position [in	long
	position counts - encoder counts or microsteps] to start the	
	triggering sequence.	
IntervalRev	When moving backwards, this is the interval [in position	long
	counts - encoder counts or microsteps] at which to output	
	the trigger pulses.	
NumPulsesRev	Number of output pulses during a backwards move.	long
PulseWidth	Trigger output pulse width (from 1 μ s to 1000000 μ s).	long
NumCycles	Number of forward/reverse move cycles.	long

REQ:

Command structure (6 bytes):

0	1	2	3	4	5
		head	ler only		
27	05	Chan Ident	00	d	S

Example:

Request the settings for the top panel wheel

TX 27, 05, 01, 00, 50, 01

GET:

Response structure (40 bytes):

6 byte header followed by 34 byte data packet.

1	2	3	4	5	6	7		8	9	10	11
	hea	ıder						Do	ita		
05	22	00 d s Chan Ident StartPosFwd									
13	14	15	16	17	18	19	20	21	22	23	
				Da	nta						
Interv	alFwd			NumPu	lsesFwd			StartF	osRev]
	13	05 22	13 14 15	05 22 00 d 13 14 15 16	05 22 00 d s 13 14 15 16 17 Da	header Chan 05 22 00 d s Chan 13 14 15 16 17 18 Data Data Data Data Data	header Image: constraint of the sector of the	header Image: constraint of the second	header Do 05 22 00 d s Chan Ident Do 13 14 15 16 17 18 19 20 21 Data	header Data 05 22 00 d s Chan Ident Data 13 14 15 16 17 18 19 20 21 22 Data Data Data Data Data Data Data	header Data 05 22 00 d s Chan Ident Data 13 14 15 16 17 18 19 20 21 22 23 Data

24	25	26	27	28	29	30	31	32	33	34	35
	Data										
	IntervalRev NumPulsesRev								Pulse	Width	

36	37	38	39						
Data									
	Interv	alFwd							

For structure see SET message above.

MGMSG_MOT_SET_MOTTRIGIOCONFIG MGMSG_MOT_REQ_MOTTRIGIOCONFIG MGMSG_MOT_GET_MOTTRIGIOCONFIG

0x0260 0x0261 0x0262

This message is applicable only to BBD301, BBD302 and BBD303 units

Function: The BBD30x brushless motor controllers offer additional triggering functions that expand the triggering capabilities of the legacy BBD20X controllers. In the legacy controller family, triggering is

(a) implemented on a per-channel basis, i.e. each motor channel had its own dedicated trigger input and output.

(b) for the inputs, hardware triggering can be used to trigger an absolute, relative and home moves.

(c) the outputs can be asserted when the stage is in motion or reaches its maximum velocity.

The BBD30x controllers expand this functionality and add the following features:

(a) For ease of connectivity, the main trigger features are brought out on BNC connectors. This allows the use of off-the-shelf BNC cables for connecting to external equipment rather than having to interface to D-type connectors.

(b) The trigger inputs and outputs are not hard wired to a particular I/O connector. In input mode, the same connector can be used to trigger multiple motor channels. In output mode, any I/O connector can be used to output a trigger signal from a motor channel.

(c) Low latency position triggering has been added. This operates at the speed of the hardware signals involved, offering delays measured in tens of nanoseconds.

(d) An analogue monitor feature has been added, allowing various system variables to be monitored using an external oscilloscope.

A block diagram of the BBD30x BNC trigger I/O is shown below:

Figure 1 BBD30x BNC trigger I/O Schematic

Main features:

- Each BNC port can be configured to be a digital input, a digital output or an analogue monitor output (only on BNC #1 and BNC #2).
- Each motor channel also has a trigger input and a trigger output signal.
- When a BNC I/O port is configured as an input, its signal can be routed to any one or more motor channels. This, for example, as shown above, BNC #2 is routed to both Motor Channel #1 and Motor Channel #2.
- When configured as an output, the BNC I/O port can be driven by any of the motor channels (but only one, in order to avoid the possibility of conflicts between different motor channels driving the same output).
- When configured as an analogue monitor, the BNC I/O port can be used to output an analogue voltage in the range of 0 to +5V. This can be assigned to a number of system variables and provides a very low latency way of monitoring the state of the system as the signal follows any changes to the system variable at the speed of the hardware. For example, absolute position can be monitored to aid PID tuning.
- The BBD301 and BBD302 controllers provide two BNC trigger I/O ports whereas the BBD303 provides three.

Warning: do not drive the TRIG ports from any voltage source that can produce an output more than the normal 0 to 5 Volt logic level range. In any case the voltage at the TRIG ports must be limited to -0.25 to +5.25 Volts.

SET

Command structure (58 bytes)

6 byte header followed by 52 byte data packet.

0	1	2	3	4	5	6	7	8	9	10	11	12	13
		he	ader						D	ata			
60	02	34	00	d	d s Channel TrigInMode TrigInPolarity						TrigInS	ource	
												_	
14	15	16	17	18	19	20	21	22	23	24	25		
					Dat	а							
TrigOu	tMode	TrigOu	tPolarity		StartPo	sFwd			Interv	/alFwd			
				1								1	
26	27	28	29	30	31	32	33	34	45	36	37	7	
					Dat	а							
	NumPu	ulsesFwd			StartPo	osRev			Interv	valRev			
												1	
38	39	40	41	42	43	44	45	46	47	48	49	50	51
						D	ata						
	PulseV	Vidth NumCycles I					Res	erved					
NumPulsesRev PulseWidth NumCycles													

50	51	52	53	54	55	56	57		
			Da	ata					
Rese	Reserved Reserved Reserved Reserved								

field	description	format
Channel	The channel being addressed (0x01, 0x02 or 0x03) encoded as a	word
	16-bit word (e.g., 0x01 0x00)	

TrigInMode	The trigger input operating mode (see Input Trigger Modes below)	word
TrigInPolarity	The active state of input trigger (i.e. logic high or logic low). HIGH 0x01 LOW 0x02	word
TrigInSource	The trigger input sourceSOFTWARE0x00Not UsedBNC10x01The trigger input source is BNC #1BNC20x02The trigger input source is BNC #2BNC30x03The trigger input source is BNC #3	word
TrigOutMode	The trigger output operating mode (see Output Trigger Modes below)	word
TrigOutPolarity	The active state of output trigger (i.e. logic high or logic low). HIGH 0x01 LOW 0x02	word
StartPosFwd	When moving forward, this is the stage position [in position counts - encoder counts or microsteps] to start the triggering sequence.	long
IntervalFwd	When moving forward, this is the interval [in position counts - encoder counts or microsteps] at which to output the trigger pulses.	long
NumPulsesFwd	Number of output pulses during a forward move.	long
StartPosRev	When moving backwards, this is the stage position [in position counts - encoder counts or microsteps] to start the triggering sequence.	long
IntervalRev	When moving backwards, this is the interval [in position counts - encoder counts or microsteps] at which to output the trigger pulses.	long
NumPulsesRev	Number of output pulses during a backwards move.	long
PulseWidth	Trigger output pulse width (from 1 μs to 1000000 μs).	long
NumCycles	Number of forward/reverse move cycles.	long
Reserved		word

Input Trigger Modes

The controller has up to 3 BNC connectors on the rear panel and each of these can be configured as a Trigger Input or a trigger output. This is set in the *Mode* parameter of the <u>SET_IOCONFIG</u> message.

When set to an input, the input mode is set in the *TrigInMode* parameter and can be set to home the stage, move the stage by a relative amount, or move the stage to a specified absolute position.

The source for the input signal is set in the *TrigInSource* parameter. Note that Input Source – SOFTWARE(0x00) is not used at this time.

The rising or falling edge of a Trigger In signal initiates the action and is set in the *TrigInPolarity* parameter. The rising edge refers to a transition from logic LOW to HIGH, and the falling edge refers to a transition from logic HIGH to LOW. Since a move already in progress will not be interrupted, the stage will not respond to an external Trigger In signal if in the process of executing a move.

The trigger settings can be used to specify whether Trigger In is disabled or will respond to the rising or falling edge of a Trigger In signal. When an absolute move is selected, the target position is specified in the *SET_MOVEABSPARAMS* message *Absolute Position* parameter. If the signal is specified to initiate a relative move, both the direction of the move and the relative distance can be specified in the

SET_MOVERELPARAMS message Relative Distance parameter. In order to avoid unexpended moves being executed on start-up, the trigger input settings are not retained in memory and will default to the input being disabled on power-up. Also be aware that transients generated when powering off a function generator connected to the Trigger In port can also be interpreted as a Trigger In signal.

Input Trigger Mode options are set as follows:

0x00 Disabled – triggering operation is disabled

0x01 GPI – General purpose input

0x02 Relative Move – a relative move is initiated on the selected channel when an input signal is received. The Input Source (BNC1, BNC2 etc.), the Polarity (High or Low) of the trigger signal, the relative distance to move and the direction of travel are specified in their associated parameter fields.

0x03 Absolute Move – an absolute move is initiated on the selected channel when an input signal is received. The Input Source (BNC1, BNC2 etc.), the Polarity (High or Low) of the trigger signal and the absolute distance to move are specified in their associated parameter fields.

0x04 Home Move – a home move is initiated on the selected channel when an input signal is received. The Input Source (BNC1, BNC2 etc.), and the Polarity (High or Low) of the trigger signal are specified in their associated parameter fields.

0x05 Stop - a stop command is initiated on the selected channel when an input signal is received. The Input Source (BNC1, BNC2 etc.), and the Polarity (High or Low) of the trigger signal are specified in their associated parameter fields.

Output Trigger Modes

The controller has up to 3 BNC connectors on the rear panel and each of these can be configured as a trigger input or a trigger output. This is set in the *Mode* parameter of the <u>SET_IOCONFIG</u> message.

When set to an output, the output mode is set in the *TrigOutMode* parameter and can be set to any of the options described below.

The motor channel's output trigger signal can be routed to any of the BNC connectors on the rear panel (set in the <u>SET_IOCONFIG</u> message). This output signal is either logic High or Low as set in the *TrigOutPolarity* parameter (LOW by default).

The Trigger Out output settings can be retained in memory and the settings will be automatically applied once phase initialization has completed after the next power-up. Whilst this can be advantageous in some applications, please note that immediately after power-up while the unit is going through its normal boot-up and initialization process, the Trigger Out output may not be in its expected state.

Output Trigger options are set as follows:

0x0a GPO – General purpose logic output. The output is

0x0B In Motion - Trigger output active (level) when motor 'in motion'. The output trigger goes high (5V) or low (0V) (as set in the Trig 1. Polarity and Trig. 2 Polarity parameters) when the stage is in motion.

OxOC At Max Velocity - Trigger output active (level) when motor at 'max velocity'.

0x0D At Position Steps Fwd - Trigger output active (pulsed) at pre-defined positions moving forward. Only one Trigger port at a time can be set to this mode. See Trigger Out Position Steps below for further details.

0x0E At Position Steps Rev - Trigger output active (pulsed) at pre-defined positions moving backwards. Only one Trigger port at a time can be set to this mode. See Trigger Out Position Steps below for further details.

0x0F At Position Steps Both - Trigger output active (pulsed) at pre-defined positions moving forwards and backward. Only one Trigger port at a time can be set to this mode. See Trigger Out Position Steps below for further details.

0x10 At Forward Limit – Trigger output active (level) when the forward limit switch is made.

Ox11 At Reverse Limit – Trigger output active (level) when the reverse limit switch is made.

0x12 At Either Limit – Trigger output active (level) when either the forward or the reverse limit switch is activated

Trigger Out Position Steps

Note

If the trigger mode is not set to one of the three position modes described previously, then the following parameters are not applicable.

As soon as a position triggering mode is selected on any of the BNC ports, the port will assert the inactive logic state, set in the *TrigOutPolarity* parameter.

As the stage moves in its travel range and the actual position matches the position set in the *StartPosFwd* parameter, the BNC port will output its active logic state. The active state will be output for the length of time specified by the Trigger *PulseWidth* parameter, then return to its inactive state and schedule the next position trigger point at the *StartPosFwd* value plus the value set in *IntervalFwd* parameter.

Thus when this second position is reached, the BNC output will be asserted to its active state again. The sequence is repeated the number of times set in the *NumPulsesFwd* parameter.

When the number of pulses set in the *NumPulsesFwd* parameter has been generated, the trigger engine will schedule the next position to occur at the position specified in the *StartPosRev* parameter. The same sequence as the forward direction is now repeated in reverse, except that the Reverse setting parameters apply. When the number of pulses has been output, the entire forward-reverse sequence will repeat the number of times specified by *NumCycles* parameter. This means that the total number of pulses output will be *NumCycles x* (*NumPulsesFwd* + *NumPulsesRev*).

Figure 1 Position Steps Triggering

Example for a move from 0 to 20 mm and back.

In forward direction: The first trigger pulse occurs at 10 mm (StartPosFwd), the next trigger pulse occurs after another 5 mm (PosIntervalFwd), the stage then moves to 20 mm.

In reverse direction: The next trigger occurs when the stage gets to 12 mm.

Trigger Polarity

The polarity of the trigger pulse is specified in the *TrigInPolarity* and *TrigOutPolarity* parameters as follows:

Trigger High - The active state of the trigger port is logic HIGH 5V (trigger input and output on a rising edge).

Trigger Low - The active state of the trigger port is logic LOW 0V (trigger input and output on a falling edge).

Triggering Latency

The detection of whether a trigger condition has occurred is carried out periodically at 102 µs intervals. As a result, there is a maximum 102 µs delay between the condition occurring and the trigger output being updated. The following timing diagram illustrates this latency.

Figure 2 **Triggering Latency**

REQ:

Command structure (6 bytes):

0	1	2	3	4	5
		head	ler only		
61	02	Chan Ident	00	d	S

Example:

Request the settings for the Trigger IO

TX 61, 02, 01, 00, 50, 01

GET: **Command structure (58 bytes)**

6 byte header followed by 52 byte data packet. For structure see SET message above.

MGMSG_MOT_SET_IOCONFIG MGMSG_MOT_REQ_IOCONFIG MGMSG_MOT_GET_IOCONFIG

0x0263 0x0264 0x0265

This message is applicable only to BBD301, BBD302 and BBD303 units

Function: This command is used to configure the BNC connectors on the rear panel of the BBD30x units. The connectors can be associated with a specific motor channel, and be set to an input or an output as follows.

SET

Command structure (12 bytes)

6 byte header followed by 6 byte data packet.

0	1	2	3	4	5	6	7	8	9	10	11
		he	ader					D	ata		
63	02	0C	00	d	S	IOPort Mod			ode	OutSo	ource

field	description	format						
IOPort	The rear panel BNC Connector number being configured.	word						
Mode	The operating mode of the connector:	word						
	DIGIIN 0x00 The I/O port is configured as a digital							
	input.							
	DIGIOUT 0x01 The I/O port is configured as a digital							
	output							
	ANALOGOUT 0x02 The I/O port is configured as an analog							
	output. It port can be used to output an analogue voltage in the							
	range of 0 to +5V. This can be assigned to a number of system							
	variables and provides a very low latency way of monitoring the							
	state of the system as the signal follows any changes to the							
	system variable at the speed of the hardware. For example,							
	absolute position can be monitored to aid PID tuning. If this							
	option is selected, the output is configured using the							
	SET_ANALOGMONITORCONFIG (0x0269) message. Only BNC #1							
	or BNC#2 connectors can be configured as Analog outputs.							
OutSource	The destination for the output signal.	word						
	SOFTWARE 0x00 The state of the output is software							
	defined							
	MOTCHAN1 0x01 The state of the output is Motor							
	Channel #1							
	MOTCHAN2 0x02 The state of the output is Motor							
	Channel #2							
	MOTCHAN3 0x03 The state of the output is Motor							
	Channel #3							

REQ:

Command structure (6 bytes):

0	1	2	3	4	5
		head	ler only		
64	02	Chan Ident	03	d	S
		Ident			

Byte 3 of the request message specifies the port number being addressed, e.g. BNC #3 = 0x03.

Example: Request the settings for IO Port BNC 3

TX 64, 02, 01, 03, 50, 01

GET:

Command structure (12 bytes)

6 byte header followed by 6 byte data packet. For structure see SET message above.

MGMSG_MOT_SET_AUXIOCONFIG	0x0266
MGMSG_MOT_REQ_AUXIOCONFIG	0x0267
MGMSG_MOT_GET_AUXIOCONFIG	0x0268

This message is applicable only to BBD301, BBD302 and BBD303 units

Function: In addition to the functionality provided by the BNC connectors, the AUX I/O connector (37-way D-type) on the rear panel provides further flexible options for connecting external digital I/O signals.

The connector provides

- 4 single ended input ports ٠
- 4 single ended output ports
- 2 differential input ports •
- One RS-232 port (Rx and Tx) •
- 12 differential output ports

The 12 differential output ports offer the user the choice to expose a buffered version of the 3 encoder signals or drive them to a software defined state. When Motor Channel Encoder is selected in the Mode parameter, Channel 1 is routed to OP6, OP5 and OP4, Channel 2 is routed to OP9, OP8 and OP7, and Channel 3 is routed to OP12, OP11 and OP10.

This command is used to configure the IO on the 37 Pin AUX IO connector on the rear panel of the BBD30x units. The connectors can be associated with a specific motor channel and be set to an input or an output as follows.

SET

Command structure (12 bytes)

6 byte header followed by 6 byte data packet.

0	1	2	3	4	5	6	7	8	9	10	11
		he	ader			Data					
66	02	0C	00	d	S	OutPort Mode SwSource			ource		

field	description	format
OutPort	AUX I/O port number being configured (bitwise OR'ed to set	word
	multiple ports simultaneously	
	PORTNUM_1 0x0001 // Aux output port number 1	
	PORTNUM_2 0x0002 // Aux output port number 2	
	PORTNUM_3 0x0004 // Aux output port number 3	
Mode	The operating mode of the associated IO port:	word
	SW 0x0001 Aux output(s) are controlled by software	
	ENC 0x0002 Aux outputs are driven by encoder	
	corresponding to the motor channel	
SwSource	The software state of the port, i.e., High = 0x01, Low = 0x02	word

REQ:

Command structure (6 bytes):

0	1	2	3	4	5
		heo	ader only		
67	02	Chan	OutPort	d	S
		Ident			

Byte 3 of the request message specifies the port number being addressed, e.g. AUX IO #3 = 0x04.

Example: Request the settings for IO Port BNC 3

TX 67, 02, 01, 04, 50, 01

GET: Command structure (12 bytes) 6 byte header followed by 6 byte data packet. For structure see SET message above.

MGMSG_MOT_SET_ANALOGMONITORCONFIG MGMSG_MOT_REQ_ANALOGMONITORCONFIG MGMSG_MOT_GET_ANALOGMONITORCONFIG

0x0269 0x0270 0x0271

This message is applicable only to BBD301, BBD302 and BBD303 units

Function: When the BNC #1 or BNC#2 connector on the rear panel is configured to be an analog output (using the <u>SET_IOCONFIG</u> message), the BNC I/O port can be used to output an analogue voltage in the range of 0 to +5V. This can be assigned to a number of system variables and provides a very low latency way of monitoring the state of the system as the signal follows any changes to the system variable at the speed of the hardware. For example, absolute position can be monitored to aid PID tuning. This message is used to configure the analog output.

SET

Command structure (20 bytes)

6 byte header followed by 14 byte data packet.

0	1	2	3	4	5	6	7	8	9	10	11
header								D	ata		
69	02	0C	00	d	S	Mo	Monitor MotorChannel SysVar				Var
12	13	14	15	16	17	18	19	1			
	Data										
Scale Offse						et					

field			description	format		
Monitor	Analogue mor	nitor nun	nber (1 or 2 for the BBD30x)	word		
MotorChannel	The Motor cha	word				
	MOTCHAN1	0x01	The output is monitoring Motor			
	Channel #1					
	MOTCHAN2	0x02	The output is monitoring Motor r			
	Channel #2					
SysVar	The system variable to be monitored: word					
	POSERROR	0x01	Position error (with SCALE and OFFSET)			
	POSITION	0x02	Actual position (with SCALE and			
	OFFSET)					
	IPHASEA	0x03	Motor phase A current (absolute scale)			
	IPHASEB	0x04	Motor phase B current (absolute scale)			
	IPHASEC	0x05	Motor phase V current (absolute scale)			
	IMOT	0x06	Motor current (absolute scale)			
Scale				long		
Offset				long		

REQ:

Command structure (6 bytes):

0	1	2	3	4	5	
header only						
70	02	Chan	00	d	S	
		Ident				

Example:

Request the analog output settings for motor channel #1

TX 70, 02, 01, 00, 50, 01

GET:

Command structure (20 bytes)

6 byte header followed by 14 byte data packet. For structure see SET message above.

MGMSG_MOT_SET_POSTRIGENSTATE0x0272MGMSG_MOT_REQ_POSTRIGENSTATE0x0273MGMSG_MOT_GET_POSTRIGENSTATE0x0274

This message is applicable only to BBD301, BBD302 and BBD303 units

Function: When the rear panel BNC connector on the rear panel is configured to output a position trigger option (set using the <u>SET_MOTTRIGIOCONFIG</u> message), this message Sets, Gets and Requests the position triggering state, i.e. arms or cancels the position trigger engine.

This message must be called to arm the position trigger before it can be used.

Note if the step parameters are changed when the position trigger is enabled a reset to the enabled state should be performed by calling this message to disarm the trigger and then calling it again to arm it.

SET

Command structure

6 byte header only.

0	1	2	3	4	5		
	Header Only						
72	02	ChanID	State	d	S		

Data Structure:

field	description				
Channel Ident	The associated motor channel number #1, #2 or #3				
MotorChannel	The position tr	The position trigger state::			
	TRIG_ARM	0x01	Arms the position trigger engine		
	TRIG_CANCEL	0x02	Cancels any ongoing position triggering		

REQ:

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
73	02	Chan Ident	00	d	S		

Example:

Request the analog output settings for motor channel #1

TX 70, 02, 01, 00, 50, 01

GET:

Command structure (20 bytes)

6 byte header followed by 14 byte data packet. For structure see SET message above.

MGMSG_MOT_SET_LCDDISPLAYPARAMS MGMSG_MOT_REQ_LCDDISPLAYPARAMS MGMSG_MOT_GET_LCDDISPLAYPARAMS

0x0543 0x0544 0x0545

This message is applicable only to BBD301, BBD302 and BBD303 units

Function: This message sets various parameters relating to the front panel display.

SET

Command structure (16 bytes)

6 byte header followed by 10 byte data packet.

0	1	2	3	4	5	6	7	8	9	10	11
		he	ader			Data					
43	05	0C	00	d	S	JSSen	sitivity	DispBrightness Di		DispT	imeOut

12	13	13 14 15		
	Da	ıta		
DispDim	Level	Reser	ved	

Data Structure:

field	description	format
JSSensitivity	The direction sense and scaling factor (-32768 to +32767) of the	word
	knob on the front panel of the unit.	
DispBrightness	The display brightness when the unit is active (0 to 100 => 0%	word
	to 100% brightness)	
DispTimeOut	Display timeout in minutes (a static display will dim after this	word
	interval has elapsed).	
DispDimLevel	After a certain time (entered in the Time Out parameter above)	word
	the display will dim to avoid burn out. This parameter sets the	
	dim level as a percentage of full brightness (range: 0 to 100 but	
	limited to wDispBrightness).	
Reserved		word

REQ:

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
44	05	Chan	00	d	S		
		Ident					

Example:

Request the LCD display settings1

TX 44, 05, 01, 00, 50, 01

GET:

Command structure (16 bytes)

6 byte header followed by 10 byte data packet. For structure see SET message above.

MGMSG_MOT_SET_LCDMOVEPARAMS MGMSG_MOT_REQ_LCDMOVEPARAMS MGMSG_MOT_GET_LCDMOVEPARAMS

0x0546 0x0547 0x0548

This message is applicable only to BBD301, BBD302 and BBD303 units

Function: This message sets various parameters relating to moves initiated via the front panel.

SET

Command structure (30 bytes)

6 byte header followed by 24 byte data packet.

0	1	2	3	4	5	6	7	8	9	10	11	12	13
		hee	header Data										
46	05	0C	00	d	S	Cha	innel	JSN	1ode		JogSt	epSize	
14	15	16	17	18	19	20	21	22	23	24	25	26	27
						Da	ıta						
	A	ccn			MaxVel JogStopMode PresetPos			etPos					

28	29
Dat	a
Reser	ved

field	description	format					
Channel	The channel being addressed (0x01, 0x02 or 0x03) encoded as a	word					
	16-bit word (e.g., 0x01 0x00)						
JSMode	LCD knob control mode (velocity or single step)						
	VELOCITY 0x01 LCD control knob in velocity control						
	mode.						
	JOG 0x02 LCD control knob for jogging in discrete						
	steps, defined by JogStepSize.						
JogStepSize	LCD control knob initiated jog step size (in position steps, only	long					
	used in single step mode)						
Accn	Acceleration in position pos. steps/sec/sec for all LCD display	long					
	board initiated moves						
MaxVel	Maximum velocity in pos. steps/sec for all LCD display board	long					
	initiated moves						
JogStopMode	The stop mode defines either an immediate (abrupt) or profiled	Word					
	tops. Set this byte to 0x01 to stop immediately, or to 0x02 to						
	stop in a controller (profiled) manner.						
PresetPos	Preset (teach) positions in wheel 'GoTo Position' mode [in	long					
	position steps						
Reserved		word					

REQ:

Command structure (6 bytes):

0	1	2	3	4	5					
header only										
47	05	Chan Ident	00	d	S					

Example:

Request the LCD move parameters1

TX 47, 05, 01, 00, 50, 01

GET:

Command structure (30 bytes)

6 byte header followed by 24 byte data packet. For structure see SET message above.

MGMSG_MOT_SET_MOVESYNCHARRAY

0x0A00

Function:	This command defines a time-position array. The command is different from the majority of other Thorlabs commands in that its length is variable. This is necessary to cater for time-position arrays of different lengths. The number of time- position points contained in this message is indicated by the parameter <i>wNumPoints</i> and the actual time-position array sent in the message contains the corresponding number of array rows in the <i>ITimePos[]</i> part of the message. Furthermore, in order to constrain the packet size, the maximum number of data points is in a single message is limited to 256.
	If the time-position array is longer than this, it must be packaged into a series of messages, with the start index parameter <i>wStartlx</i> adjusted accordingly. Similarly, the time position array is limited to a total of 60,000 data points. As the time-position array may contain position points for any number of channels up to the number supported by the controller, the <i>wChannels</i> parameter indicates which channels the position data is for.
	To support downloading several different time-position arrays, the parameter <i>wArrayID</i> identifies the array. Note . The current generation of BBD30X controllers only supports a single array and therefore, this parameter must be set to "1" currently. This field is to allow for future development to extend this feature.
	The time points are encoded differentially, i.e. the value indicates the time difference between the last and the current time. All values are in machine units and the conversion factors listed in Section 8 (Conversion between position, velocity and acceleration values in standard physical units and their equivalent Thorlabs parameters) at the beginning of this document.

SET:

Command structure (Variable Length):

		2				_			- 1	0	-	10		12	10	
0	1	2	3	3	4	5	6		/	8	9	10	11	12	13	
header only								Data								
80	09	ХХ	XX		D0	S1	A	ArrayID Channels NumPoints							rtlx	
14	15	16	17	18	19	20	21	22	23	24	25	Etc	Etc			
	Data															
	TimePos[]															

field	description	format
ArrayID	The array being addressed. This supports the	word
	downloading of several different position arrays.	
	Note. The current generation of BBD30X controllers only	
	supports a single array and therefore, this parameter	
	must be set to "1" currently. This field is to allow for	

	future development to extend this feature.	
Channels	Bitwise OR of all channels in the time position array.	word
NumPoints	The number of Time Position points contained in the message, maximum 256.	word
Startlx	The start index parameter for the array (zero-based). This is used if the time-position array is longer than 256 data points, and therefore must be packaged into a series of messages.	word
TimePos[]	The data for the time position array. For example In the example below we will consider two cases. If the time-position array involves two motor channels, then TimePos[] will be	Unconstrained array of long
	Time[0], Pos1[0], Pos2[0], Time[1], Pos1[1], Pos2[1], Time[2], Pos1[2], Pos2[2], etc – effectively a sequence of three 32-bit values.	
	With 3 channels involved then TimePos[] would be Time[0], Pos1[0], Pos2[0], Pos3[0], Time[1], Pos1[1],	
	Pos2[1], Pos3[1], Time[2], Pos1[2], Pos2[2], Pos3[2] Etc The maximum number of data points in the array is 60,000.	

Example:

Assuming the time-position array to be downloaded contains 100 entries for channels 1 and 2 (time + channel 1 position + channel 2 position values), starting from index zero. The first few entries in the time-position array are shown below:

1100000	1350000
1100002	1348690
1100011	1347867
1100023	1347666
	1100002 1100011

The corresponding message is below:

80 09 B8 04 D0 01 01 00 <mark>03 00 <mark>64 00</mark> 00 00 00 00 00 00 <mark>E0 C8 10 00</mark> <mark>70 99 14 00</mark> 50 00 00 00 E2 C8 10 00 <mark>52 94 14 00</mark> 50 00 00 00 EB C8 10 00 <mark>1B 91 14 00</mark> 50 00 00 00 F7 C8 10 00 <mark>52 90</mark> 14 00</mark>

80 09 B8 04 D0 01: Message header, indicating 0x04B8 (1208) bytes to follow the header.

Out of these 1208 bytes, the first 8 contains the wArrayID (2 bytes) + wChannels (2 bytes) + wNumPoints (2 bytes) + wStartIx (2 bytes) parameters.

The remaining 1200 bytes contain the 100 entries for each time-position entry.

As the ITimePos[] array contains three 4-byte values, each entry in the array requires 12 bytes, therefore 100 points requires 1200 bytes.

14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	Etc
	TimePos[]															
	Time[0] Pos1[0]							Pos	2[0]	Time[1]				Etc		

Note that the destination byte of the message (D0) indicates that the message is sent to the whole controller, rather than any individual channel. With multi-axis synchronized moves, sending the command to an individual channel would be in contradiction with the purpose of the command.

01 00: wArrayID	array ID number 1
<mark>03 00</mark> : wChannels	0x01 0x02, indicating that the time-position array data is for
channels 1 and 2	
<mark>64 00</mark> : wNumPoints	this message contains 100 time-position entries (array elements)
<mark>00 00</mark> : wStartIx	the start index for the entries is zero
00 00 00 00 E0 C8 10 0	0 70 99 14 00: the first time + channel 1 position + channel 2 positio

00 00 00 00 E0 C8 10 00 70 99 14 00: the first time + channel 1 position + channel 2 position values: 0, 1100000, 1350000 **50 00 00 00 E2 C8 10 00 52 94 14 00**: the second entry: 80, 1100002, 1348690 And so forth.

Note that if the array was longer than 100 time-position points, the next message would have the *wStartIx* parameter set to 100, as the first message contained data for array indices 0 to 99. The user must take care to ensure the continuity of the data, as leaving gaps will result in unpredictable behaviour.

MGMSG_MOT_SET_MOVESYNCHPARAMS

0x0A03

Function: This command specifies the parameters for outputting the timeposition array. As explained in the section AN INTRODUCTION TO MULTI-AXIS SYNCHRONIZED MOVES, the time-position array contains a Leading Section, a Repeated Section and a Trailing Section. The command downloads these parameters. Thus, the time-position array will be output with the repeated section beginning at wCycleStartIx, and finishing at wCycleEndIx, and repeating wNumCycles number of times. In line with the command defining the time-position array, the parameter *wArrayID* identifies the array that the parameters above are applied to. Normally, the time-position array lead-in and lead-out sections contain a smooth transition from stationary to moving state and then back to stationary again, as the multi-axis synchronized move is assumed to describe a complete move sequence. However, if the move needs to be interrupted and stopped, the parameter IDeceleration will be applied to bring the various moving axes to

SET:

Command structure (Variable Length):

standstill.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	
header only						Data								
83	09	хх	хх	D0	S1	Arra	ArrayID CycleStartIx CycleEndIx NumCyc							
14	15	16	5 17	1	8	19	20	21	22	23	24	25	5	
	Data													
E	EndIx Deceleration					Reserved			Res	erved	Re	Reserved		

field	description	format
ArrayID	The array being addressed. This supports the downloading of several different position arrays	word
CycleStartIx	Start index of repeated (cyclic) part of the trajectory (zero- based)	word
CycleEndIx	End index of cyclic part (zero-based)	word
NumCycles	Number of times the cyclic part is repeated	word
Endlx	End index of the complete synchronized move sequence (zero-based) i.e. total number of time-position array elements. The BBD30X (currently) has a maximum capacity of 60,000.	word
Deceleration	Deceleration time if the move is stopped before completing all points. This measured in controller-specific servo update intervals	long
Reserved		word
Reserved		word

Reserved

word

Example:

Assuming the synchronous move parameters as follows: Cycle to start at index 4, end at index 1207, repeated 3 times, with the complete section finishing at index 1211, using deceleration value of 6871 for stop.

The header of the message (83 09 26 00 D0 01) follows the same format as before. The bytes that follow contain the parameters:

01 00:	wArrayID	array ID number 1								
<mark>04 00</mark> :	wCycleStartIx	the repeated section of the array starts at index 4								
<mark>B7 04</mark> :	wCycleEndIx	the repeated section of the array ends at index 1207								
<mark>03 00</mark> :	wNumCycles	the repeated section is repeated 3 times								
BB 04:	wEndIx	the end of the entire sequence is at index 1211								
<mark>D7 1A 00 00</mark> :	IDeceleration	use a deceleration value of 6871 if the move is stopped								
The remaining	The remaining bytes are reserved and sent as zeros.									

MGMSG_MOT_MOVE_SYNCHSTART

0x0A06

Function:This command is used to start a synchronized multi-axis move that
has been defined with the previous two commands (0x0980 and
0x0983).

In line with the command defining the time-position array, the parameter *wArrayID* identifies the array that the parameters above are applied to.

The *wChannels* parameter defines which channels to start. Normally this would contain all the channels that the time-position array was downloaded for, although it is also possible to start the move only on some of the channels.

The *wTrigger* parameter defines the trigger for starting the synchronized move. If this parameter is 0x01, the move will start immediately (software trigger).

SET:

Command structure (Variable Length):

0	1	2	3	4	5	6	7	8	9	10	11		
		head	ler only			Data							
83	83 09 xx xx D0 S1					ArrayID Channels Trigg							

Data Structure:

field	description	format
ArrayID	The array being addressed. This supports the downloading	word
	of several different position arrays	
Channels	Bitwise OR of all channels in the time position array.	word
Trigger	Trigger source to start the move as follows: 1 – Software Trigger	word

Example:

Start the multi-axis synchronized move on channels 1 and 2 86 09 06 00 D0 01 01 00 03 00 01 00

The header of the message (86 09 06 00 D0 01) follows the same format as before. The bytes that follow contain the parameters:

01 00: wArrayID	array ID number 1.
<mark>03 00</mark> : wChannels	start the multi-axis synchronized move on channels 1 and 2.
<mark>01 00</mark> : wTrigger	software trigger, the move is started immediately.

Note: to stop a synchronized multi-axis move the MGMSG_MOT_MOVE_STOP (0x0465) command can be used, with the channel idents bitwise OR'ed.

MGMSG_MOT_SET_RASTERMOVEPARAMS	0x0A10
MGMSG_MOT_REQ_RASTERMOVEPARAMS	0x0A11
MGMSG_MOT_GET_RASTERMOVEPARAMS	0x0A12

Function:This command specifies parameters that define the raster pattern
performed when the MOVERASTER message is called.

SET:

Command structure (Variable Length):

.

0	1	2	3	4	5	6	7	8	9)	10	11	12	13
	header only Data													
10	0A	хх	хх	D0) S1 ScanPattern TrtiggerSource TriggerMode TriggerPola					Polarity				
14	15	16	17	18	19	20	21	22	23	24	25	26	27	
Data														
	Sta	rtPosX			RelDis	stanceX			NumC	ycles)	x	Dwel	ITimeX	

28	29	30	31	32	33	34	35	36	37	38	39	40	41
	Data												
	StartPosY RelDistanceY NumCyclesY DwellTime					TimeX							

field	description	forma
		t
ScanPattern	Defines the type of raster scan pattern to be performed: flyback/unidirectional scan (0x01) or reverse/bidirectional scan0x02) 0x01 - FLYBACK Flyback (unidirectional) scan 0x02 - FWDREV Forward/Reverse (bidirectional) scan y [mm] 55 55 55 55 55 55 55 55 55 55 55 55 55	word
TriggerSourc e	Image: 10 20 30 40 50 Image: 10 20 30 40 50 Flyback scan Forward-reverse scan Sets the trigger source as follows: Ox00 - The motor channel's trigger input source is software 0x01 - The motor channel's trigger input source is BNC #1 Ox02 - The motor channel's trigger input source is BNC #1	word
TuissonNast	0x03 - The motor channel's trigger input source is BNC #3	
TriggerMod	Sets the trigger mode as follows:	word

е	0x01 - SOFTWARE Software trigger, raster scan move starts	
	immediately	
	0x02 - XSTEP Trigger starts next relative move along the X axis	
	0x03 - YSTEP Trigger starts the complete X axis move sequence,	
	then stops and awaits next trigger before Y step	
	0x04 - XYSCAN Trigger starts the complete sequence of all moves	
	0x05 - ONOFF Trigger starts the whole sequence, stops when	
	trigger is de-asserted, resumes when trigger is asserted	
TriggerPolari	Sets the trigger polarity as follows:	word
ty	0x01 - Trigger polarity High	
	0x02 - Trigger polarity Low	
StartPosX	The start position for the X axis in mm	long
RelDistance	Positive or negative relative distance to move (in position steps).	long
х		
NumCyclesX	Number of times the relative move is performed	long
DwellTimeX	Dwell time in milliseconds	word
StartPosY	The start position for the Y axis in mm	long
RelDistanceY	Positive or negative relative distance to move (in position steps).	long
NumCyclesY	Number of times the relative move is performed	long
DwellTimeY	Dwell time in milliseconds	word

Example:

Configure a raster scan with the parameters detailed below: Scan Pattern: *Flyback* Trigger Source: *BNC2* Trigger Mode: *X Step* Trigger Polarity: *High* Start Position X: *15 mm* Relative Distance X: *10 mm* Number of Cycles X: *5* Dwell Time X: *500 ms* Start Position Y: *20 mm* Relative Distance Y: *10 mm* Number of Cycles Y: *6* Dwell Time Y: *1000 ms*

In the code example below, the message header is in red, parameters for the whole scan are in purple, X-axis parameters are in blue and Y-axis parameters are in green 10 0A 24 00 91 01 01 00 02 00 02 00 01 00 E0 93 04 00 40 0D 03 00 05 00 00 00 F4 01 80 1A 06 00 40 0D 03 00 06 00 00 00 E8 03

The header of the message (10 0A 24 00 91 01) follows the normal format. The bytes that follow contain the parameters:

01 00 Scan Pattern: *Flyback* 02 00 Trigger Source: *BNC2* 02 00 Trigger Mode: *X Step* 01 00 Trigger Polarity: *High* E0 93 04 00 Start Position X: *15 mm* 40 0D 03 00 Relative Distance X: *10 mm* 05 00 00 00 Number of Cycles X: *5* F4 01 Dwell Time X: *500 ms* 80 1A 06 00 Start Position Y: *20 mm* 40 0D 03 00 Relative Distance Y: *10 mm* 06 00 00 00 Number of Cycles Y: *6* E8 03 Dwell Time Y: *1000 ms*

Note: to start, pause or stop a raster scan the <u>MGMSG_MOT_MOVE_RASTER (0x0A13)</u> command can be used.

MGMSG_MOT_MOVE_RASTER

0x0A13

Function:This command is used to start, stop and pause a raster scan that has
been defined with the previous command (0x0A10).
Note that if the raster move is hardware triggered, the command will
only act as an enable/disable signal and the actual move will also be
subject to the hardware trigger state.

SET:

Command structure (6 bytes):

0	1	2	3	4	5				
	header only								
13	0A	Chan	Command	d	S				
		Ident							

Data Structure:

field	description	format
Chan Ident	The channel being addressed	char
COMMAND	The command as a 4 bit integer:	char
	0x01 START – Starts the raster scan.	
	0x02 PAUSE – Pauses the raster scan. The move will	
	continue after the next start command.	
	0x03 STOP – Stops the raster scan. The next start command	
	will re-start the raster scan from the beginning.	

Example:

Start the raster scan'.

TX 13, 0A, 01, 01, 50, 01

- 13, 0A MOVE_RASTER
- 01, Channel 1
- 01, Start the raster scan
- 50, destination Generic USB device
- 01, Source PC
Filter Flipper Control Messages

Introduction

The Thorlabs Filter Flipper drive uses the Motor server control instance control its functionality. The messages listed here provide the extra functionality required for a client application to control one or more of the Thorlabs series of MFF series flipper units.

MGMSG_MOT_SET_MFF_OPERPARAMS MGMSG_MOT_REQ_MFF_OPERPARAMS MGMSG_MOT_GET_MFF_OPERPARAMS

0x0510 0x0511 0x0512

Function:Used to set various operating parameters that dictate the function
of the MFF series flipper unit.

SET:

Command structure (40 bytes)

6 byte header followed by 34 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
header					Data						
10	05	22	00	d	S	Chan Ident ITransitTime					
12	13	14	15	16	17	18	19	20	21	22	23
	Data										
	ITransitTimeADC OperMode1				SigMode1 PulseWidth1						

24	25	26	27	28	29	30	31	32	33	34	35	
			Data									
OperMode2		SigM	ode2	PulseWidth2				Not Used				

36	36 37		39				
Not Used							

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
lTransitTime	The time taken (in milliseconds) for the flipper to move from position 1 to position 2 and vice versa. Values must be entered in the range 300 to 2800 ms.	long
ITransitTimeADC	The time taken (in ADC counts) for the flipper to move from position 1 to position 2 and vice versa. The number of ADC counts is calculated from an equation that relates actual time of flight in milli- seconds to the ADC value required by the flipper code. The equation relating the two variables is defined as follows TransitTimeADC = 10000000 x TransitTime ^{-1.591} Example A transit time of 500 ms would be calculated as TransitTimeADC = 10000000 x 500 ^{-1.591} = 10000000 x 0.00005080877 = 508.0877 so a user requiring 500ms motion time needs to set 508 as the ADC value in the structure. This value is then used by the flipper to give a reasonable approximation for the actual time of flight.	long
wDigIO10perMode	Specifies the operating mode of the DIG IO 1	word

	 input/output signal as follows: 01 Sets IO connector to input and 'toggle position' mode. In this mode, the input signal causes flipper to move to other position). 	
	O2 Sets IO connector to input and 'goto position' mode. In this mode, the input signal dictates flipper position, POS 1 or POS 2. as dictated by the Button Input or Button Input (Swap Pos) parameters set in the DigIOSigMode parameter below.	
	O3 Sets IO connector to output mode, where the O/P signal indicates the flipper is 'at position'.	
	O4 Sets IO connector to output mode, where the O/P signal indicates the flipper is in motion (i.e. between positions).	
wDigIO1SigMode	 Specifies the functionality of the input/output signal. as follows: 01 The connector can be short circuited (e.g. with button). If the Operating Mode is set to Input: Toggle Position then a short circuit causes the flipper to toggle position. If the Operating Mode is set to Input: Goto Position then a short circuit causes the flipper to move to Pos 1 and open circuit causes flipper to move to POS 02. The connector is set to logic input where a logic transition (edge) dictates flipper operation. If the Operating Mode above set to Input: Toggle Position, then a LO to HI edge causes flipper to move to POS 1 and a HI to LO edge causes the flipper to move to POS 2. 04 This parameter can be 'Bitwise Ored' with either the button or the logic parameters above, such that the open circuit and short circuit or the edge functionality is swapped. 10 The connector is set to a logic output where the logic transition (edge) represents flipper position. If the Operating Mode above is set to Output: At Position, then a LO to HI edge (LI level) indicates the flipper is at POS 2. 	word
	20 MFFSIGMODE_OP_PULSE The connector is set to	

	 a logic output where a logic pulse indicates flipper operation. If the Operating Mode above is set to Output: At Position, then a logic HI pulse indicates flipper has reached a position. If the Operating Mode above is set to Output: InMotion, then a logic HI pulse indicates the flipper has started moving. The Pulse width is set in the Signal Width paramter below. 40 This parameter can be 'Bitwise Ored' with either the level (edge) or the pulse parameters above, such that the level or pulse functionality is swapped. 	
IDigIO1PulseWidth	The pulse width in ms when the Digital Signal Mode described previously is set to Logic Pulse Output or Logic Pulse Output (Inverted). The pulse width is set within the range 10 to 200 ms.	long
wDigIO2OperMode	As DiglO1	word
wDigIO2SigMode	As DigIO1	word
IDigIO2PulseWidth	As DigIO1	long
Not Used		long
Not Used		dword

Example:

Set the MFF parameters for chan 1 as follows:

TransitTime	500 ms
TransitTimeADC	508 counts
DigIO1OperMode	Toggle Position
DigIO1SigMode	Button Mode Input
DigIO1PulseWidth	200 ms
DigIO2OperMode	Toggle Position
DigIO2SigMode	Button Mode Input
DigIO2PulseWidth	200 ms
Not Used	
Not Used	

TX 10,05,22,00,D0,01,

REQ:

Command structure (6 bytes):

0	1	2	3	4	5				
header only									
11	05	Chan	00	d	S				
		Ident							

Example:

Request the MFF operating modes

TX 11, 05, 01, 00, 50, 01

GET:

Response structure (40 bytes):

0	1	2	3	4	5	6	7	8	9	10	11
	header				Data						
10	05	22	00	d	S	Chan Ident ITransitTime					
12	13	14	15	16	17	18	19	20	21	22	23
					Da	nta					
	ITransitTimeADC OperMode1				SigMode1 PulseWidth1						
24	25	26	27	28	29	30	31	32	33	34	35
				Data							

PulseWidth2

Not Used

36	37	38	39

SigMode2

Not Used

See SET for structure

OperMode2

Solenoid Control Messages

Introduction

The Thorlabs Solenoid drive uses the Motor server control instance control its functionality. The messages listed here provide the extra functionality required for a client application to control one or more of the Thorlabs series of TSC001 T-Cube solenoid driver units.

MGMSG_MOT_SET_SOL_OPERATINGMODE MGMSG_MOT_REQ_SOL_OPERATINGMODE MGMSG_MOT_GET_SOL_OPERATINGMODE

Function: This message sets the operating mode of the solenoid driver.

SET:

Command structure (6 bytes):

0	1	2	3	4	5			
header only								
C0	04	Chan	Mode	d	S			
		Ident						

Data Structure:

description	format
The channel being addressed	char
The operating mode of the unit as a 4 bit integer: 0x01 SOLENOID_MANUAL - In this mode, operation of the solenoid is via the front panel 'Enable' button, or by the 'Output' buttons on the GUI panel. 0x02 SOLENOID_SINGLE - In this mode, the solenoid will open and close each time the front panel 'Enable' button is pressed, or the 'Output ON' button on the GUI panel is clicked. The ON and OFF times are specified by calling the <u>MGMSG_MOT_SET_SOL_CYCLEPARAMS</u> message. 0x03 SOLENOID_AUTO - In this mode, the solenoid will open and close continuously after the front panel 'Enable' button is pressed, or the 'Output ON' button on the GUI panel is clicked. The ON and OFF times, and the number of cycles performed, are specified by calling the <u>MGMSG_MOT_SET_SOL_CYCLEPARAMS</u> message. 0x04 SOLENOID_TRIGGER - In Triggered mode, a rising edge on rear panel TRIG IN BNC input will start execution of the parameters programmed on the unit (On Time, Off Time, Num Cycles - see <u>MGMSG_MOT_SET_SOL_CYCLEPARAMS</u> message.). The unit must be primed (i.e. the ENABLE button pressed and the ENABLED LED lit) before the unit can	char
	The channel being addressed The operating mode of the unit as a 4 bit integer: 0x01 SOLENOID_MANUAL - In this mode, operation of the solenoid is via the front panel 'Enable' button, or by the 'Output' buttons on the GUI panel. 0x02 SOLENOID_SINGLE - In this mode, the solenoid will open and close each time the front panel 'Enable' button is pressed, or the 'Output ON' button on the GUI panel is clicked. The ON and OFF times are specified by calling the <u>MGMSG MOT SET SOL CYCLEPARAMS</u> message. 0x03 SOLENOID_AUTO - In this mode, the solenoid will open and close continuously after the front panel 'Enable' button is pressed, or the 'Output ON' button on the GUI panel is clicked. The ON and OFF times, and the number of cycles performed, are specified by calling the <u>MGMSG MOT SET SOL CYCLEPARAMS</u> message. 0x04 SOLENOID_TRIGGER - In Triggered mode, a rising edge on rear panel TRIG IN BNC input will start execution of the parameters programmed on the unit (On Time, Off Time, Num Cycles - see <u>MGMSG MOT SET SOL CYCLEPARAMS</u> message.). The unit must be primed (i.e. the ENABLE button

Example:

Set the control mode to 'Single'.

TX CO, 04, 01, 02, 50, 01

C0,04 SET_SOL_OPERATINGMODE 01, Channel 1 02, Set mode to 'Single' 50, destination Generic USB device

REQ:

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
C1	04	Chan	00	d	S		
		Ident					

Example:

Request the control mode

TX C1, 04, 01, 00, 50, 01

GET:

Response structure (6 bytes):

0	1	2	3	4	5		
header only							
C2	04	Chan	Mode	d	S		
		Ident					

Example:

Get the control mode currently set.

RX C2, 04, 01, 01, 01, 50

MGMSG_MOT_SET_SOL_CYCLEPARAMS MGMSG_MOT_REQ_SOL_CYCLEPARAMS MGMSG_MOT_GET_SOL_CYCLEPARAMS

0x04C3 0x04C4 0x04C5

Function:Used to set the cycle parameters that are applicable when the
solenoid controller is operating in one of the non-manual modes.

SET:

Command structure (20 bytes)

6 byte header followed by 14 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header				Data						
C3	04	0E	00	d	S	Chan Ident OnTime					

12	13	14	15	16	17	18	19	
Data								
	OffT	īme			Num(Cycles		

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
OnTime	The time which the solenoid is activated	long
	(100ms to 10,000s in 1 ms steps)	
OffTime	The time which the solenoid is a de-activated	long
	(100ms to 10,000s in 1 ms steps)	
NumCycles	If the unit is operating in 'Auto' mode, the number of Open/Close cycles to perform. (0 to 1,000,000) is specified in the NumCycles parameter. If set to '0' the unit cycles indefinitely. If the unit is not operating in 'Auto' mode, the NumCycles parameter is ignored.	long

Example: Set the cycle parameters parameters for chan 1 as follows: OnTime: 1000ms OffTime: 1000ms NumCycles: 20

TX C3, 04, 0E, 00, D0, 01, 01, 00, E8, 03, 00, 00, E8, 03, 00, 00, 14, 00, 00, 00

Header: C3, 04, 0E, 00, D0, 01: Set Cycle Params, D0H (14) byte data packet, Generic USB Device.

Chan Ident: 01, 00: Channel 1 (always set to 1 for TSC001) OnTime: E8, 03, 00, 00: Set on time to 1000 ms (i.e. 1000 ms) OffTime: E8, 03, 00, 00: Set off time to 1000 ms (i.e. 1000 ms) NumCycles: 14, 00, 00, 00: Set number of cycles to 20

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
C4	04	Chan	00	d	S		
		Ident					

GET:

Response structure (20 bytes)

6 byte header followed by 14 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		header					Data				
C5	04	OE	00	d	S	Chan Ident OnTime					

12	13	14	15	16	17	18	19	
Data								
	OffT	Time			Num	Cycles		

MGMSG_MOT_SET_SOL_INTERLOCKMODE MGMSG_MOT_REQ_SOL_INTERLOCKMODE MGMSG_MOT_GET_SOL_INTERLOCKMODE

Function:The solenoid unit features a hardware interlock jackplug. This
message specifies whether the solenoid driver requires the
hardware interlock to be fitted before it can operate.

SET:

Command structure (6 bytes):

0	1	2	3	4	5								
header only													
C6	04	Chan	Mode	d	S								
		Ident											

Data Structure:

field	description	format
Chan Ident	The channel being addressed	char
Interlock	The operating mode of the unit as a 4 bit integer:	char
Mode	0x01 SOLENOID_ENABLED – The hardware interlock must	
	be fitted before the unit can be operated.	
	0x02 SOLENOID_DISABLED – The hardware interlock is not	
	required.	

Example: Set the interlock mode to 'Enabled'.

TX C6, 04, 01, 01, 50, 01

C0,06 SET_SOL_INTERLOCKMODE 01, Channel 1 01, Set mode to 'Enabled' 50, destination Generic USB device

01, Source PC

REQ:

Command structure (6 bytes):

0	1	2	3	4	5			
header only								
C7	04	Chan	00	d	S			
		Ident						

Example:

Request the control mode

TX C7, 04, 01, 00, 50, 01

GET:

Response structure (6 bytes):

0	1	2	3	4	5		
header only							
C8	04	Chan	Mode	d	S		
		Ident					

Example:

Get the control mode currently set.

RX C8, 04, 01, 01, 01, 50

MGMSG_MOT_SET_SOL_STATE MGMSG_MOT_REQ_SOL_STATE MGMSG_MOT_GET_SOL_STATE

0x04CC 0x04CD

0x04CB

 Function:
 This message sets the output state of the solenoid unit, and overrides any existing settings. It can also be operated by the SET CHANENABLESTATE message.

SET:

Command structure (6 bytes):

0	1	2	3	4	5	
header only						
CB	04	Chan	State	d	S	
		Ident				

Data Structure:

field	description	format
Chan Ident	The channel being addressed	char
Interlock	The operating mode of the unit as a 4 bit integer:	char
Mode	0x01 SOLENOID_ON – The solenoid is active.	
	0x02 SOLENOID_OFF – The solenoid is de-activated.	

Example:

Set the solenoid to 'ON'.

TX CB, 04, 01, 01, 50, 01

CB,06 SET_SOL_STATE

- 01, Channel 1
- 01, Set state to 'ON'
- 50, destination Generic USB device
- 01, Source PC

REQ:

Command structure (6 bytes):

0	1	2	3	4	5	
header only						
CC	04	Chan	00	d	S	
		Ident				

Example:

Request the control mode

TX CC, 04, 01, 00, 50, 01

GET:

Response structure (6 bytes):

0	1	2	3	4	5		
head	header only						
CD	04	Chan Ident	Mode	d	S		

Example:

Get the control mode currently set.

RX CD, 04, 01, 01, 01, 50

Piezo Control Messages

Introduction

The 'Piezo' control messages provide the functionality required for a client application to control one or more of the Thorlabs series of piezo controller units. This range of controllers covers both open and closed loop piezo control in a variety of formats including compact Cube type controllers, benchtop units and 19" rack based modular drivers. **Note.** For ease of description, the TSG001 T-Cube Strain Gauge reader is considered here as a piezo controller.

The piezo messages can be used to perform activities such as selecting output voltages, reading the strain gauge position feedback, operating open and closed loop modes and enabling force sensing mode. With a few exceptions, these messages are generic and apply equally to both single and dual channel units.

Where applicable, the target channel is identified in the IChanID parameter and on single channel units, this must be set to CHAN1_ID. On dual channel units, this can be set to CHAN1_ID, CHAN2_ID or CHANBOTH_ID as required.

For details on the operation of the Piezo Controller, and information on the principles of operation, refer to the handbook supplied with the unit.

MGMSG_PZ_SET_POSCONTROLMODE MGMSG_PZ_REQ_POSCONTROLMODE MGMSG_PZ_GET_POSCONTROLMODE

Function:When in closed-loop mode, position is maintained by a feedback
signal from the piezo actuator. This is only possible when using
actuators equipped with position sensing.
This method sets the control loop status The Control Mode is
specified in the Mode parameter as follows:

- 0x01 Open Loop (no feedback)
- 0x02 Closed Loop (feedback employed)
- 0x03 Open Loop Smooth
- 0x04 Closed Loop Smooth

If set to Open Loop Smooth or Closed Loop Smooth is selected, the feedback status is the same as above however the transition from open to closed loop (or vise versa) is achieved over a longer period in order to minimize voltage transients (spikes).

SET: Command structure (6 bytes):

0	1	2	3	4	5	
header only						
40	06	Chan Ident	Mode	d	S	

0x0640

0x0641 0x0642 Example:

Set the control mode to closed loop.

TX 40, 06, 01, 02, 50, 01

REQ:

Command structure (6 bytes):

0	1	2	3	4	5	
header only						
41	06	Chan	00	d	S	
		Ident				

Example:

Request the control mode

TX 41, 06, 01, 00, 50, 01

GET:

Response structure (6 bytes):

0	1	2	3	4	5	
header only						
42	06	Chan Ident	Mode	d	S	

Example:

Get the control mode that is currently set.

RX 42, 06, 01, 02, 01, 50

MGMSG_PZMOT_MOVE_START

0x2100

Function:

Used to start an open/close loop move.

TX structure (6 bytes):

0	1	2	3	4	5	
header only						
00	21	d	S			

Data Structure:

field	description	format
Chanldent	The channel being addressed	char
StartMove	Move start control, 0x1 start move, others don't move.	char

Upon completion of the move the controller sends a Move Completed message as previously described.

Example: Move start with channel 1. TX 00, 21, 01, 01, 50, 01

MGMSG_PZMOT_PULSE_PARA_ACQUIRE MGMSG_PZMOT_PULSE_PARA_ACQUIRED

0x2102 0x2103

Function: Used to start pulse parameters acquire operation for optimized performance.

TX structure (6 bytes):

0	1	2	3	4	5		
	header only						
02	21	Chanldent	00	d	S		

Data Structure:

field	description	format
ChanIdent	The channel being addressed	char

Upon completion of the move, the controller sends an acquired parameters operation finished message (MGMSG_PZMOT_PULSE_PARA_ACQUIRED).

Example: Start parameters acquire operation with channel 1 to get the best performance parameters.

TX 02, 21 ,01 ,00 ,50 ,01

ACQUIRED:

Function: No response on initial message, but upon completion of parameters acquire operation sends an "acquired parameters" message:

RX structure (6 bytes):

0	1	2	3	4	5	
header only						
03 21 Chanldent 00 d s						

Example: The best performance parameters for channel 1 has been acquired. TX 03, 21,01,00,01,50

MGMSG_PZ_SET_OUTPUTVOLTS MGMSG_PZ_REQ_OUTPUTVOLTS MGMSG_PZ_GET_OUTPUTVOLTS

0x0643 0x0644 0x0645

Function:Used to set the output voltage applied to the piezo actuator. This
command is applicable only in Open Loop mode. If called when in
Closed Loop mode it is ignored.

SET:

Command structure (10 bytes)

6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
header							Da	ıta	
43	06	04	04 00 d s				Ident	Volt	age

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Voltage	The output voltage applied to the piezo when operating in open loop mode. The voltage is set in the range -32768 to 32767 (-7FFF to 7FFF) to which corresponds to -100% to 100% of the maximum output voltage as set using the TPZ_IOSETTINGS command.	short

Example: Set the drive voltage to 70V

TX 43, 06, 04, 00, D0, 01, 01, 00, 77, 77,

Header: 43, 06, 04, 00, D0, 01: SetPZOutputVolts, 04 byte data packet, Generic USB Device. *Chan Ident: 01, 00*: Channel 1

Voltage: 77, 77: corresponds to 70 V (30583) for a max 75 V unit

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
44	6	Chan	00	d	S		
		Ident					

GET:

Response structure (10 bytes)

6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
header							Da	nta	
45	06	04 00 d s				Chan	Ident	Volt	age

MGMSG_PZ_SET_OUTPUTPOS	0x0646
MGMSG_PZ_REQ_OUTPUTPOS	0x0647
MGMSG_PZ_GET_OUTPUTPOS	0x0648

Function:

Used to set the output position of piezo actuator. This command is applicable only in Closed Loop mode. If called when in Open Loop mode it is ignored. The position of the actuator is relative to the datum set for the arrangement using the ZeroPosition method.

SET:

Command structure (10 bytes)

6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
header						Da	ıta		
46	06	04	00	d	S	Chan Ident PositionSV		onSW	

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
PositionSW	The output position of the piezo relative to the zero	word
	position. The voltage is set as a signed 16-bit integer (word)	
	in the range 0 to 32767 (0 to 7FFF). This corresponds to 0 to	
	100% of the maximum piezo extension. The negative range	
	(0x800 to FFFF) is not used to set a position at this time.	
	When reporting the position near to 0% of extension, the	
	value may be a small negative value (short).	

Example: Set the drive position to $15 \,\mu$ m (when total travel = $100 \,\mu$ m).

TX 46, 06, 04, 00, D0, 01, 01, 00, 33, 13,

Header: 46, 06, 04, 00, D0, 01: SetPZOutputPos, 04 byte data packet, Generic USB Device. *Chan Ident: 01, 00*: Channel 1

PositionSW: 33, 13: corresponds to 15 µm for a max 100 µm unit

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
47	06	Chan	00	d	S		
		Ident					

GET:

Response structure (10 bytes) 6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
header							Da	nta	
48	06	04	00	d	d s Chan Ident PositionSV				onSW

MGMSG_PZ_SET_INPUTVOLTSSRC MGMSG_PZ_REQ_INPUTVOLTSSRC MGMSG_PZ_GET_INPUTVOLTSSRC

0x0652 0x0653 0x0654

Function:Used to set the input source(s) which controls the output from the
HV amplifier circuit (i.e. the drive to the piezo actuators).

SET:

Command structure (10 bytes) 6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
header						Da	ıta		
52	06	04	00	d	S	Chan Ident VoltSrc		tSrc	

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
VoltSrc	The following values are entered into the VoltSrc parameter to select the various analog sources. <i>OxOO Software Only</i> : Unit responds only to software inputs and the HV amp output is that set using the SetVoltOutput method or via the GUI panel. <i>OxO1 External Signal</i> : Unit sums the differential signal on the rear panel EXT IN (+) and EXT IN (-)connectors with the voltage set using the SetVoltOutput method <i>OxO2 Potentiometer</i> : The HV amp output is controlled by a potentiometer input (either on the control panel, or connected to the rear panel User I/O D-type connector) summed with the voltage set using the SetVoltOutput method. The values can be 'bitwise ord' to sum the software source with either or both of the other source options.	word

Example: Set the input source to software and potentiometer.

TX 52, 06, 04, 00, D0, 01, 01, 00, 02, 00,

Header: 52, 06, 04, 00, D0, 01: SetVoltsSrc, 04 byte data packet, Generic USB Device. *Chan Ident: 01, 00*: Channel 1 *VoltSrc: 02, 00*: selects software and potentiometer inputs

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5				
	header only								
53	06	Chan Ident	00	d	S				

GET:

Response structure (10 bytes) 6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
	header						Da	ıta	
54	06	04	Chan	Ident	Volt	sSrc			

MGMSG_PZ_SET_PICONSTS	0x0655
MGMSG_PZ_REQ_PICONSTS	0x0656
MGMSG_PZ_GET_PICONSTS	0x0657

Function:Used to set the proportional and integration feedback loop
constants. These parameters determine the response characteristics
when operating in closed loop mode.
The processors within the controller compare the required
(demanded) position with the actual position to create an error,
which is then passed through a digital PI-type filter. The filtered
value is used to develop an output voltage to drive the piezo.

SET:

Command structure (12 bytes) 6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder					Da	ıta		
55	06	06	00	d	S	Chan Ident PropConst IntCons			onst		

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
PropConst	The value of the proportional term in the range 0 to 255.	word
IntConst	The value of the Integral term.in the range 0 to 255	word

Example: Set the PI constants for a TPZ001 unit.

TX 55, 06, 06, 00, D0, 01, 01, 00, 64, 00, 0F, 00

Header: 55, 06, 05, 00, D0, 01: SetPIConsts, 06 byte data packet, Generic USB Device. *Chan Ident: 01, 00*: Channel 1 *PropConst: 64, 00*: sets the proportional constant to 100 *IntConst: 0F, 00*: sets the integral constant to15

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5	
header only						
56	06	Chan Ident	00	d	S	

GET:

Response structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header						Da	ıta			
57	06	06	00	d	S	Chan Ident PropConst IntCor				onst	

MGMSG_PZ_REQ_PZSTATUSBITS **MGMSG_**PZ_GET_PZSTATUSBITS

0x065B 0x065C

Function:Returns a number of status flags pertaining to the operation of the
piezo controller channel specified in the Chan Ident parameter.
These flags are returned in a single 32 bit integer parameter and can
provide additional useful status information for client application
development. The individual bits (flags) of the 32 bit integer value
are described in the following tables.

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5			
	header only							
5B	06	Chan Ident	00	d	S			

GET:

Response structure (12 bytes) 6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder					Data			
5C	06	06	00	d	S	Chan	Ident		Statu	IsBits	

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
StatusBits	The status bits for the associated controller channel. The meaning of the individual bits (flags) of the 32 bit integer value will depend on the controller and are described in the following tables.	dword

TPZ001 controller

Hex Value	Bit Number	Description
0x0000001	1	Piezo actuator connected (1 - connected, 0 - not connected).
	2 to 4	For Future Use
0x0000010	5	Piezo channel has been zero'd (1 - zero'd, 0 not zero'd).
0x0000020	6	Piezo channel is zeroing (1 - zeroing, 0 - not zeroing).
0x0000040	7 to 8	For Future Use
0x0000100	9	Strain gauge feedback connected (1 - connected, 0 - not
		connected).
	10	For Future Use
0x00000400	11	Position control mode (1 - closed loop, 0 - open loop).
	12 to 20	For Future Use

BPC series controllers

Hex Value	Bit Number	Description					
0x0000001	1	Piezo actuator connected (1 - connected, 0 - not connected).					
	2 to 4	For Future Use					
0x00000010	5	Piezo channel has been zero'd (1 - zero'd, 0 not zero'd).					
0x0000020	6	Piezo channel is zeroing (1 - zeroing, 0 - not zeroing).					
0x00000040	7 to 8	For Future Use					
0x00000100	9	Strain gauge feedback connected (1 - connected, 0 - not					
		connected).					
	10	For Future Use					
0x00000400	11	Position control mode (1 - closed loop, 0 - open loop).					
	12	For Future Use					
Note. Bits 13, 14 a	and 15 are applic	cable only to BPC30x series controllers.					
0x00001000	13	Hardware set to 75 V max output voltage					
0x00002000	14	Hardware set to 100 V max output voltage					
0x00004000	15	Hardware set to 150 V max output voltage					
	16 to 20	For Future Use					
Note. Bits 21 to 28	8 (Digital Input S	tates) are only applicable if the associated digital input is fitted to					
your controller – s	see the relevant	handbook for more details					
0x00100000	21	Digital input 1 state (1 - logic high, 0 - logic low).					
0x00200000	22	Digital input 2 state (1 - logic high, 0 - logic low).					
0x00400000	23	Digital input 3 state (1 - logic high, 0 - logic low).					
0x00800000	24	Digital input 4 state (1 - logic high, 0 - logic low).					
0x01000000	25	Digital input 5 state (1 - logic high, 0 - logic low).					
0x02000000	26	Digital input 6 state (1 - logic high, 0 - logic low).					
0x04000000	27	Digital input 7 state (1 - logic high, 0 - logic low).					
0x08000000	28	Digital input 8 state (1 - logic high, 0 - logic low).					
	29	For Future Use					
0x20000000	30	Active (1 – indicates unit is active, 0 – not active)					
0x40000000	31	For Future Use					
0x80000000	32	Channel enabled (1 – enabled, 0- disabled)					

MGMSG_PZ_REQ_PZSTATUSUPDATE MGMSG_PZ_GET_PZSTATUSUPDATE

0x0660 0x0661

Function:This function is used in applications where spontaneous status
messages (i.e. messages sent using the START_STATUSUPDATES
command) must be avoided.
Status update messages contain information about the position and
status of the controller (for example position and O/P voltage). The
messages will be sent by the controller each time the function is
called.

NOTE. This message is also returned by the NanoTrak control when it is operating in piezo mode.

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
60	06	Chan	00	d	S		
		Ident					

GET:

Status update messages are received with the following format:-

Response structure (16 bytes)

6 byte header followed by 10 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder					Da	ıta		
61	06	0A	00	d	S	Chan	Ident	OPVo	ltage	Posi	tion

12	13	14	15
	Statu	s Bits	

Data Structure:

field	description	format
Chan Ident	The channel being addressed is always P_MOD_CHAN1	word
	(0x01) encoded as a 16-bit word (0x01 0x00)	
OPVoltage	The output voltage applied to the piezo. The voltage is	short
	returned in the range -32768 to 32767 (-7FFF to 7FFF) which	
	corresponds to -100% to 100% of the maximum output	
	voltage as set using the TPZ_IOSETTINGS command.	
Position	The position of the piezo. The position is returned in the	short
	range 0 to 32767 (0 to 7FFF) which corresponds to 0 to	
	100% of the maximum position.	
Status Bits	The meaning of the individual bits (flags) of the 32 bit	dword
	integer value will depend on the controller and are	
	described in the following tables.	

TPZ001 KPZ101 controller

Hex Value	Bit Number	Description
0x0000001	1	Piezo actuator connected (1 - connected, 0 - not connected).
	2 to 4	For Future Use
0x0000010	5	Piezo channel has been zero'd (1 - zero'd, 0 not zero'd).
0x0000020	6	Piezo channel is zeroing (1 - zeroing, 0 - not zeroing).
0x0000040	7 to 8	For Future Use
0x00000100	9	Strain gauge feedback connected (1 - connected, 0 - not connected).
	10	For Future Use
0x00000400	11	Position control mode (1 - closed loop, 0 - open loop).
	12 to 20	For Future Use

BPC series controllers

Hex Value	Bit Number	Description
0x0000001	1	Piezo actuator connected (1 - connected, 0 - not connected).
	2 to 4	For Future Use
0x00000010	5	Piezo channel has been zero'd (1 - zero'd, 0 not zero'd).
0x0000020	6	Piezo channel is zeroing (1 - zeroing, 0 - not zeroing).
0x00000040	7 to 8	For Future Use
0x00000100	9	Strain gauge feedback connected (1 - connected, 0 - not
		connected).
	10	For Future Use
0x00000400	11	Position control mode (1 - closed loop, 0 - open loop).
	12 to 20	For Future Use
Note. Bits 21 to 28	8 (Digital Input S	tates) are only applicable if the associated digital input is fitted to
your controller – s	see the relevant	handbook for more details
0x00100000	21	Digital input 1 state (1 - logic high, 0 - logic low).
0x00200000	22	Digital input 2 state (1 - logic high, 0 - logic low).
0x00400000	23	Digital input 3 state (1 - logic high, 0 - logic low).
0x00800000	24	Digital input 4 state (1 - logic high, 0 - logic low).
0x01000000	25	Digital input 5 state (1 - logic high, 0 - logic low).
0x02000000	26	Digital input 6 state (1 - logic high, 0 - logic low).
0x04000000	27	Digital input 7 state (1 - logic high, 0 - logic low).
0x08000000	28	Digital input 8 state (1 - logic high, 0 - logic low).
	29	For Future Use
0x20000000	30	Active (1 – indicates unit is active, 0 – not active)
0x40000000	31	For Future Use
0x80000000	32	Channel enabled (1 – enabled, 0- disabled)

MGMSG_PZ_ACK_PZSTATUSUPDATE

0x0662

Only Applicable If Using USB COMMS. Does not apply to RS-232 COMMS

Function:If using the USB port, this message called "server alive" must be sent
by the server to the controller at least once a second or the
controller will stop responding after ~50 commands.
The controller keeps track of the number of "status update" type of
messages (e.g.move complete message) and it if has sent 50 of
these without the server sending a "server alive" message, it will
stop sending any more "status update" messages.
This function is used by the controller to check that the PC/Server
has not crashed or switched off. There is no response.

Structure (6 bytes):

0	1	2	3	4	5		
header only							
62	06	00	00	d	S		

TX 62, 06, 00, 00, 50, 01

MGMSG_PZ_SET_PPC_PIDCONSTS MGMSG_PZ_REQ_PPC_PIDCONSTS MGMSG_PZ_GET_PPC_PIDCONSTS

0x0690 0x0691 0x0692

THIS MESSAGE IS APPLICABLE ONLY TO PPC001, PPC102 and CT1P UNITS

Function: When operating in Closed Loop mode, the proportional, integral and derivative (PID) constants can be used to fine tune the behaviour of the feedback loop to changes in the output voltage or position. While closed loop operation allows more precise control of the position, feedback loops need to be adjusted to suit the different types of focus mount assemblies that can be connected to the system. Due to the wide range of objectives that can be used with the PFM450 and their different masses, some loop tuning may be necessary to optimize the response of the system and to avoid instability.

This message sets values for these PID parameters. The default values have been optimized to work with the actuator shipped with the controller and any changes should be made with caution.

SET:

Command structure (18 bytes) 6 byte header followed by 12 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder					Da	ıta		
90	06	0C	00	d	S	Chan	Ident	PIDCc	onstsP	PIDCo	onstsl

12	13	14	15	16	17		
	Data						
PIDCo	nstsD	PIDCor	stsDFC	PIDDei	rivFilterON		

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
PIDConstsP	The value of the Proportional term in the range 0 to 10000 (H2719), default 900	Float
PIDConstsI	The value of the Integral term in the range 0 to 10000 (H2719), default 800	Float
PIDConstsD	The value of the Derivative term in the range 0 to 10000 (H2719), default 90	Float
PIDConstsDFC	The value of the Derivative Low Pass Filter Cut Off Frequency in the range 0 to 10000 (H2719), default 1000	Float
PIDDerivFilterON	Derivative Filter ON (0x01) or OFF (0x02)	Word

Example: Set the PID constants

TX 90, 06, 0C, 00, D0, 01, 01, 00, 84, 03, 20, 03, 5A, 00, E8, 03, 01, 00

Header: 90, 06, 0C, 00, D0, 01: SetPIConsts, 12 byte data packet, Generic USB Device.
Chan Ident: 01, 00: Channel 1
PIDConstsP: 84, 03: sets the proportional constant to 900
PIDConstsI: 20, 03: sets the integral constant to 800
PIDConstsD: 5A, 00: sets the derivative constant to 90
PIDConstsD: E8, 03: sets the derivative cut off frequency to 1000
PIDConstsD: 01, 00: sets the derivative cut off filter ON.

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5
		head	ler only		
91	06	Chan Ident	00	d	S

GET:

Response structure (12 bytes) 6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder			Data					
92	06	0C	00	d	S	Chan	Ident	PIDCc	nstsP	PIDCo	onstsl

12	13	14	15	16	17	
	Data					
PIDCo	onstsD	PIDCor	stsDFC	PIDDer	rivFilterON	

MGMSG_PZ_SET_PPC_NOTCHPARAMS MGMSG_PZ_REQ_PPC_NOTCHPARAMS MGMSG_PZ_GET_PPC_NOTCHPARAMS

0x0693 0x0694 0x0695

THIS MESSAGE IS APPLICABLE ONLY TO PPC001 AND PPC102 UNITS

Function: Due to their construction, most actuators are prone to mechanical resonance at well-defined frequencies. The underlying reason is that all spring-mass systems are natural harmonic oscillators. This proneness to resonance can be a problem in closed loop systems because, coupled with the effect of the feedback, it can result in oscillations. With some actuators, the resonance peak is either weak enough or at a high enough frequency for the resonance not to be troublesome. With other actuators the resonance peak is very significant and needs to be eliminated for operation in a stable closed loop system. The notch filter is an adjustable electronic antiresonance that can be used to counteract the natural resonance of the mechanical system. As the resonant frequency of actuators varies with load in addition to the minor variations from product to product, the notch filter is tuneable so that its characteristics can be adjusted to match those of the actuator. In addition to its centre frequency, the bandwidth of the notch (or the equivalent quality factor, often referred to as the

Q-factor) can also be adjusted. In simple terms, the Q factor is the centre frequency/bandwidth, and defines how wide the notch is, a higher Q factor defining a narrower ("higher quality") notch. Optimizing the Q factor requires some experimentation but in general a value of 5 to 10 is in most cases a good starting point.

SET:

Command structure (22 bytes)

6 byte header followed by 16 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
	header						Data					
93	06	10	00	d	S	Chan Ident		: F	ilterNo	Filte	Filter1FC	
12	13	14	15	16	17	7	18	19	20	21		

12	13	14	15	10	17	10	15	20	21				
	Data												
Data													
Filte	r1Q	NotchF	ilter10N	Filte	r2FC	Filt€	er2Q	NotchFilter2ON					
								•					

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
FilterNo	The filter number being addressed	word
	Filter 1 = 1	
	Filter 2 = 2	
	Both = 3	
Filter1FC	The centre frequency of notch filter 1 in the range 20 to	Float
	500.	
Filter1Q	The Q Factor of Notch Filter 1, in the range 0.2 to 100	Float

NotchFilter10N	Enables and disables notch filter 1.	word
	1 = ON	
	2 = OFF	
Filter2FC	The centre frequency of notch filter 2 in the range 20 to	Float
	500.	
Filter2Q	The Q Factor of Notch Filter 1, in the range 0.2 to 100	Float
NotchFilter2ON	Enables and disables notch filter 2.	word
	1 = ON	
	2 = OFF	

Example: Set the PID constants

TX 93, 06, 10, 00, D0, 01, 01, 00, 01, 00, 96, 00, 32, 00, 01, 00, 00, 00, 00, 00, 00, 00

Header: 90, 06, 0C, 00, D0, 01: SetNotchParams, 16 byte data packet, Generic USB Device. Chan Ident: 01, 00: Channel 1 FilterNo: 01, 00: Address Filter No 1 Filter1FC: 96, 00 Set the centre frequency o0f Filter 1 to 150 Hz Filter1Q: 32, 00 Set the Q factor of Filter 1 to 50 NotchFilter1ON: 01, 00 Set Notch Filter 1 ON Filter2FC: 00, 00 Filter2Q: 00, 00 NotchFilter2ON: 00, 00

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5						
	header only										
94	06	Chan Ident	00	d	S						

GET:

Response structure (12 bytes) 6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
	header						Data					
95	06	10	00	d	S	Chan Ident		Fi	lterNo	Filte	Filter1FC	
12	13	14	15	16	17	7 :	18	19	20	21		
	Data											

Data									
Filter1Q	NotchFilter10N	Filter2FC	Filter2Q	NotchFilter2ON					

MGMSG_PZ_SET_PPC_IOSETTINGS MGMSG_PZ_REQ_PPC_IOSETTINGS MGMSG_PZ_GET_PPC_IOSETTINGS

0x0696 0x0697 0x0698

THIS MESSAGE IS APPLICABLE ONLY TO PPC001 AND PPC102 UNITS

Function:

This message is used to set various input and output parameter values associated with the rear panel BNC IO connectors.

SET:

Command structure (20 bytes)

6 byte header followed by 14 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
		hea	ıder				Data Chan Ident ControlSrc MonitorOPSig					
96	06	OE	00	d	S	Chan Ident		Cont	rolSrc	Monito	AonitorOPSig	
								_				
12	13	14	15	16	17	18	18 19					
		Do	nta									
Monit	orOPBW	Feed	backSrc	FPBrig	htness	Rese	rved]				

Data Structure:

field	description	format
Chan Ident	The channel being addressed is always P_MOD_CHAN1 (0x01) encoded as a 16-bit word (0x01 0x00)	word
ControlSrc		word
	If EXT BNC + Joystick + Software (3) is selected, the unit sums all three signals.	

MonitorOPSig	The signal on the rear panel EXT OUT BNC can be used to monitor the piezo actuator on an oscilloscope or other device. The type of signal can be set as follows: Drive Voltage = 1 Raw Position = 2 Linearized Position = 3 If <i>Drive Voltage (1)</i> is selected, the signal driving the EXT OUT (Monitor) BNC is a scaled down version of the piezo output voltage, with 150 V piezo voltage corresponding to 10V. If <i>Raw Position (2)</i> is selected, the signal driving the EXT OUT (Monitor) BNC is the output voltage of the position demodulator. This signal shows a slight nonlinearity as a function of position and a small offset voltage. As a result it is not as accurate as the linearized position. However, having not undergone any digital processing it is free of any potential digital signal processing effects and can be more advantageous for loop tuning and transient response measurement. If <i>Linearized Position (3)</i> is selected, the signal driving EXT OUT is linearized and scaled so that the 0 to full range	word
MonitorOPBW	corresponds to 0 to 10 Volts. The signal on the rear panel EXT OUT BNC can also be filtered to limit the output bandwidth to the range of interest in most closed loop applications, i.e. 200Hz. The filter is set as follows: No Filter = 1	Word
	200 Hz Low Pass Filter = 2	
FeedbackSrc	When operating in closed loop mode, the feedback can be supplied by either a Capacitive or a Strain Gauge sensor. This parameter is used to specify the feedback type as follows: Strain Gauge = 1	Word
EDD richters	Capacitive = 2	word
FPBrightness	The brightness of the LEDs on the front panel of the unit can be set to Bright, Dim or Off as follows: Bright = 1 Dim = 2 Off = 3	word
Reserved	Reserved	word

REQ:

Command structure (6 bytes):

0	1	2	3	4	5				
header only									
97	06	01	00	d	S				

GET:

Response structure (20 bytes)

6 byte header followed by 14 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11		
		hea	ıder			Data							
98	06	OE	00	d	S	Chan Ident		Chan Ident		Conti	rolSrc	Monito	orOPSig
								_					
12	13	14	15	16	17	18	19						

Data							
MonitorOPBW	FeedbackSrc	FPBrightness	Reserved				

See SET message for structure.

MGMSG_PZ_SET_OUTPUTLUT MGMSG_PZ_REQ_OUTPUTLUT MGMSG_PZ_GET_OUTPUTLUT

0x0700
0x0701
0x0702

Function: It is possible to use the controller in an arbitrary Waveform Generator Mode (WGM). Rather than the unit outputting an adjustable but static voltage or position, the WGM allows the user to define a voltage or position sequence to be output, either periodically or a fixed number of times, with a selectable interval between adjacent samples. This waveform generation function is particularly useful for operations such as scanning over a particular area, or in any other application that requires a predefined movement sequence. The waveform is stored as values in an array, with a maximum of 8000 samples per channel. The samples can have the meaning of voltage or position; if open loop operation is specified when the samples are output, then their meaning is voltage and vice versa, if the channel is set to closed loop operation, the samples are interpreted as position values. If the waveform to be output requires less than 8000 samples, it is sufficient to download the desired number of samples. This function is used to load the LUT array with the required output waveform. The applicable channel is specified by the Chan Ident parameter If only a sub set of the array is being used (as specified by the cyclelength parameter of the <u>SetOutputLUTParams</u> function), then only the first cyclelength values need to be set. In this manner, any arbitrary voltage waveform can be programmed into the LUT. Note. The LUT values are output by the system at a maximum bandwidth of 7KHz, e.g.500 LUT values will take approximately 71 ms to be clocked out and the full 8000 LUT values will take approximately 1.14 secs.

SET:

Command structure (12 bytes) 6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header					Data					
00	07	06	00	d	S	Chan Ident		Inc	lex	Out	put

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Index	The position in the array of the value to be set (0 to 7999 for BPC, 0 to 512 for TPZ).	word
Output	The voltage value to be set. Values are set in the range - 32768 to 32767 which corresponds to -100% to 100% of the max HV output (piezo drive voltage).	short

Example: Set output LUT value of 10V (for 150V piezo) in array position 2.

TX 00, 07, 06, 00, D0, 01, 01, 00, 02, 00, 88, 08

Header: 00, 07, 06, 00, D0, 01: SETOUTPUTLUT, 06 byte data packet, Generic USB Device. *Chan Ident: 01, 00*: Channel 1 *Index: 02, 00*: sets the value of array position 2 *IntConst: 88, 08*: sets the value to 10V. (i.e. 150/10=15, 32767/15=2184, 2184=0888H)

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5			
header only								
01	07	Chan	00	d	S			
		Ident						

GET:

Response structure (12 bytes) 6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header					Data					
02	07	06	00	d	S	Chan Ident		Ind	lex	Out	put
MGMSG_PZ_SET_OUTPUTLUTPARAMS MGMSG_PZ_REQ_OUTPUTLUTPARAMS MGMSG_PZ_GET_OUTPUTLUTPARAMS

Function:It is possible to use the controller in an arbitrary Waveform
Generator Mode (WGM). Rather than the unit outputting an
adjustable but static voltage or position, the WGM allows the user
to define a voltage or position sequence to be output, either
periodically or a fixed number of times, with a selectable interval
between adjacent samples.

This waveform generation function is particularly useful for operations such as scanning over a particular area, or in any other application that requires a predefined movement sequence. This function is used to set parameters which control the output of the LUT array.

SET:

Command structure (36 bytes) 6 byte header followed by 30 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder	•	•	Data				•	•
03	07	1E	00	d	S	Chan	Ident	Mo	ode	CycleL	ength
12	13	14	15	16	17	18	19	20	21	22	23
Data											
	Num(Cycles			Delay	/Time			PreCyc	cleRest	
24	25	26	27	28	29	30	31	32	33	34	35
Data											
	PostCy	cleRest		OPTri	gStart		OPTrig	gWidth		TrigRe	pCycle

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Mode	Specifies the output mode of the LUT waveform as follows. Values can be 'bitwise or'd together as required. 0x01 - OUTPUTLUT_CONTINUOUS – The waveform is output continuously (i.e. until a StopOPLUT command is received). 0x02 - OUTPUTLUT_FIXED – A fixed number of waveform cycles are output (as specified in the NumCycles parameter).	word
	The following values are not applicable to the TPZ001 unit because it has no triggering functionality. 0x04 - OUTPUTLUT_OUTPUTTRIG – Enables Output Triggering. With OP Triggering enabled, the system can be configured to generate one or more hardware trigger pulses during a LUT (waveform) cycle output, as specified in the OPTrigStart parameter below.	

0x0703

0x0704

0x0705

		. <u> </u>
	0x08 - OUTPUTLUT_INPUTTRIG –Enables Input Triggering. With INPUTTRIG set to 'False', the waveform generator will start as soon as it receives a StartOPLUT command. If however, INPUTTRIG is set to 'True, waveform generation will only start if a software command is received AND the trigger input is in its active state. In most cases, the trigger input will be used to synchronize waveform generation to an external event. In this case, the StartOPLUT command can be viewed as a command to "arm" the waveform generator and the waveform will start as soon as the input becomes active. The trigger input can be used to trigger a single channel or multiple channels. In this latter case ensure that input triggering is enabled on all the desired channels. Using the trigger input for multiple channels is particularly useful to synchronize all channels to the same event. 0x10 - OUTPUTLUT_OUTPUTTRIG_SENSE_HI – determines the voltage sense and edge of the O/P trigger. If this bit is set, the units responds to a rising edge (OV to 5V) trigger. If not set it responds to a falling edge (5V to 0V). 0x20 - OUTPUTLUT_INPUTTRIG_SENSE_HI – determines the voltage sense and edge of the I/P trigger. If this bit is set, the units responds to a rising edge (OV to 5V) trigger. If not set it responds to a falling edge (5V to 0V). 0x40 - OUTPUTLUT_LUTGATED – If set to '1' the trigger acts as a gate, if set to '0' acts as trigger. 0x80 - OUTPUTLUT_OUTPUTTRIG_REPEAT – This parameter is a flag which determines if repeated O/P triggering is enabled. If set, the output trigger is repeated by the interval set in the TrigRepeatCycle parameter. This is	
	useful for multiple triggering during a single voltage O/P	
	sweep.	
CycleLength	Specifies how many samples will be output in each cycle of the waveform. It can be set in the range 0 to 7999 for BPC and MPZ units, and 0 to 512 for TPZ units. It must be less than or equal to the total number of samples that were loaded. (To set the LUT array values for a particular channel, see the SetOutputLUT function).	word
NumCycles	Specifies the number of cycles (1 to 2147483648) to be output when the Mode parameter is set to fixed. If Mode is set to Continuous, the NumCycles parameter is ignored. In both cases, the waveform is not output until a StartOPLUT command is received.	long
DelayTime	Specifies the delay (in sample intervals) that the system waits after setting each LUT output value. By default, the time the system takes to output LUT values (sampling interval) is set at the maximum bandwidth possible, i.e. 7KHz (0.14 ms) for MPZ models, 3.33kHz(0.33 ms) for BPC303 and 4 kHz (0.25 ms) for TPZ units. The DelayTime parameter specifies the time interval between neighbouring samples, i.e. for how long the	long

	sample will remain at its present value.	
	To increase the time between samples, set the DelayTime	
	parameter to the required additional delay (1 to	
	2147483648 sample intervals). In this way, the user can	
	stretch or shrink the waveform without affecting its overall	
Due Cuele De et	shape.	law a
PreCycleRest	In some applications, during waveform generation the first	long
	and the last samples may need to be handled differently	
	from the rest of the waveform. For example, in a	
	positioning system it may be necessary to start the	
	movement by staying at a certain position for a specified length of time, then perform a movement, then remain at	
	the last position for another specified length of time. This is	
	the purpose of PreCycleRest and PostCycleRest	
	parameters, i.e. they specify the length of time that the	
	first and last samples are output for, independently of the	
	DelayTime parameter.	
	The PreCycleRest parameter allows a delay time to be set	
	before the system starts to clock out the LUT values. The	
	delay can be set between 0 and 2147483648 sample	
	intervals. The system then outputs the first value in the	
	LUT until the PreCycleRest time has expired.	
PostCycleRest	In a similar way to PreCycleRest, the PostCycleRest	long
,	parameter specifies the delay imposed by the system after	U
	a LUT table has been output. The delay can be set between	
	0 and 2147483648 sample intervals. The system then	
	outputs the last value in the cycle until the PostCycleRest	
	time has expired.	
OPTrigStart	Output triggering is enabled by setting the value 0x04 in	word
	the MODE parameter. With Op Triggering enabled, the	
	system can be configured to generate one or more	
	hardware trigger pulses during a LUT (waveform) cycle	
	output. The OPTrigStart parameter specifies the LUT value	
	(position in the LUT array) at which to initiate an output	
	trigger. In this way, it is possible to synchronize an output	
	trigger with the output of a particular voltage value. Values	
	are set in the range 1 to 8000 but must also be less than	
	the CycleLength parameter.	
OPTrigWidth	sets the width of the output trigger. Values are entered in	long
TrigDonastCurt	1ms increments for BPC20x models.	word
TrigRepeatCycle	specifies the repeat interval between O/P triggers when	word
	OUTPUTTRIG_REPEAT is set to True. This parameter is	
	specified in the number of LUT values between triggers (0	
	to 7999 for MPZ and BPC units, 0 to 512 for TPZ units). If this value is greater than the ICycleLength parameter (set	
	in the SetOPLUTParams method) then by definition, a	
	repeated trigger will not occur during a single waveform	
	cycle output.	
	cycle output.	

Header: 03, 07, 06, 00, D0, 01: SETOUTPUTLUTPARAMS, 30 byte data packet, Generic USB Device. *Channel*: 1 *Mode*: OUTPUTLUT continuous *CycleLength*: 00, 28 *NumCycles*: 00, 00, 00, 14 *DelayTime*: 00, 00, 00, 0A *PreCycleRest*: 00, 00, 00, 0A *PostCycleRest*: 00, 00, 00, 0A *OPTrigStart*: 00, 00 *OPTrigWidth*: 00, 00, 00, 01 *TrigRepeatCycle*: 00, 64

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5
		head	ler only		
04	07	Chan Ident	00	d	S

GET:

Response structure (36 bytes) 6 byte header followed by 30 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
	_	_	ıder					Da	-	10		
03	07	1E	00	d	S	Chan	Ident	Mo	de	Cyclel	CycleLength	
	•					•						
12	13	14	15	16	17	18	19	20	21	22	23	
					Do	nta						
	Num	Cycles			Delay	/Time			PreCyc	cleRest		
24	25	26	27	28	29	30	31	32	33	34	35	
Data												
	PostCy	cleRest		OPTri	gStart		OPTrig	gWidth		TrigRe	pCycle	

For structure see SET message above.

MGMSG_PZ_START_LUTOUTPUT

Function:This function is used to start the voltage waveform (LUT) outputs.
Note. If the IPTrig flag of the SetOPLUTTrigParams function is set to
false, this method initiates the waveform immediately. If the IPTrig
flag is set to true, then this method 'arms' the system, in readiness
for receipt of an input trigger.

TX structure (6 bytes):

0	1	2	3	4	5
		head	ler only		
06	07	Chan Ident	00	d	S

MGMSG_PZ_STOP_LUTOUTPUT

0x0707

0x0706

Function:

This function is used to stop the voltage waveform (LUT) outputs.

TX structure (6 bytes):

0	1	2	3	4	5
		head	ler only		
07	07	Chan	00	d	S
		Ident			

MGMSG_PZ_SET_EEPROMPARAMS

Function: Used to save the parameter settings for the specified message. These settings may have been altered either through the various method calls or through user interaction with the GUI (specifically, by clicking on the 'Settings' button found in the lower right hand corner of the user interface).

SET:

Command structure (10 bytes) 6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
		hea	ıder				Da	ıta	
D0	07	04	00	d	S	Chan	Ident	Ms	gID

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
MsgID	The message ID of the message containing the parameters to be saved.	word

Example:

TX D0, 07, 04, 00, D0, 01, 01, 00, 03, 07,

Header: D0, 07, 04, 00, D0, 01: Set_EEPROMPARAMS, 04 byte data packet, Generic USB Device.

Chan Ident: 01, 00: Channel 1

MsgID: Save parameters specified by message 0703 (SetOutputLUTParams).

0x07D0

MGMSG_PZ_SET_TPZ_DISPSETTINGS MGMSG_PZ_REQ_TPZ_DISPSETTINGS MGMSG_PZ_GET_TPZ_DISPSETTINGS

0x07D1 0x07D2 0x07D3

Function:Used to set the intensity of the LED display on the front of the TPZ
unit.

SET:

Command structure (8 bytes) 6 byte header followed by 2 byte data packet as follows:

0	1	2	3	4	5	6	7
		hea	ıder			Da	nta
D1	07	02	00	d	S	Displn	tensity

Data Structure:

field	description	format
DispIntensity	The intensity is set as a value from 0 (Off) to 255 (brightest).	word

Example: Set the input source to software and potentiometer.

TX D1, 07, 02, 00, D0, 01, 64, 00,

Header: D1, 07, 02, 00, D0, 01: Set_DISPSETTINGS, 02 byte data packet, Generic USB Device. *DispIntensity: 64, 00*: Sets the display brightness to 100 (40%)

REQ:

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
D2 07 01 00 d s							

Example:

Request the display intensity

TX D2, 07, 01, 00, 50, 01

GET:

Command structure (8 bytes)

6 byte header followed by 2 byte data packet as follows:

0	1	2	3	4	5	6	7
		Do	nta				
D3	07	02	00	d	S	DispIntensity	

See SET for data structure.

0x07D4 0x07D5 0x07D6

Function:This function is used to set various I/O settings as described below.The settings can be saved (persisted) to the EEPROM by calling the
MGMSG_PZ_SET_EEPROMPARAMS function.

SET:

Command structure (16 bytes)

MGMSG_PZ_SET_TPZ_IOSETTINGS

MGMSG_PZ_REQ_TPZ_IOSETTINGS MGMSG_PZ_GET_TPZ_IOSETTINGS

6 byte header followed by 10 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder					Da	ıta		
D4	07	0A	00	d	S	Chan Ident VoltageLimit HubAnalo		alogIP			

12	13	14	15			
Data						
Futur	e Use	Futur	e Use			

Data Structure:

field	description	format
Chan Ident	The channel being addressed is always P_MOD_CHAN1	word
	(0x01) encoded as a 16-bit word (0x01 0x00)	
VoltageLimit	The piezo actuator connected to the T-Cube has a specific	word
	maximum operating voltage range. This parameter sets	
	the maximum output to the value specified as follows:	
	0x01 VOLTAGELIMIT_75V 75V limit	
	0x02 VOLTAGELIMIT_100V 100V limit	
	0x03 VOLTAGELIMIT_150V 150V limit	
HubAnalogInput	When the T-Cube Piezo Driver unit is used in conjunction	word
	with the T-Cube Strain Gauge Reader (TSG001) on the T-	
	Cube Controller Hub (TCH001), a feedback signal can be	
	passed from the Strain Gauge Reader to the Piezo unit.	
	High precision closed loop operation is then possible using	
	our complete range of feedback-equipped piezo actuators.	
	This parameter is used to select the way in which the	
	feedback signal is routed to the Piezo unit as follows:	
	0x01 HUB_ANALOGUEIN_A the feedback	
	signals run through all T-Cube bays.	
	0x02 HUB_ANALOGUEIN_B the feedback	
	signals run between adjacent pairs of T-Cube bays	
	(i.e. 1&2, 3&4, 5&6). This setting is useful when	
	several pairs of Strain Gauge/Piezo Driver cubes	
	are being used on the same hub.	
	0x03 EXTSIG_SMA the feedback signals run	
	through the rear panel SMA connectors.	

REQ:

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
D5	D5 07 01 00 d						

GET:

Response structure (16 bytes)

6 byte header followed by 10 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder					Da	ıta		
D4	07	0A	00	d	S	Chan	Ident	Voltag	eLimit	HubAn	alogIP

12	13	14	15			
Data						
Futur	e Use	Futu	re Us			

See SET message for structure.

MGMSG_PZ_SET_ZERO

Function:This function applies a voltage of zero volts to the actuator
associated with the channel specified by the IChanID parameter, and
then reads the position. This reading is then taken to be the zero
reference for all subsequent position readings. This routine is
typically called during the initialisation or re-initialisation of the
piezo arrangement.

TX structure (6 bytes):

0	1	2	3	4	5		
header only							
58	06	Chan	00	d	S		
		Ident					

0x0658

MGMSG_PZ_REQ_MAXTRAVEL MGMSG_PZ_GET_MAXTRAVEL

0x0650 0x0651

Function:In the case of actuators with built in position sensing, the
Piezoelectric Control Unit can detect the range of travel of the
actuator since this information is programmed in the electronic
circuit inside the actuator. This function retrieves the maximum
travel for the piezo actuator associated with the channel specified
by the Chan Ident parameter, and returns a value (in microns) in the
Travel parameter.

REQ:

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
50 06 01 00 d s							

Example: Request the max travel of the actuator associated with Channel 1, bay 2 (0x22)

TX 50, 06, 01, 00, 22, 01

GET:

Response structure (10 bytes)

6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
		hea	ıder				Da	nta	
51	06	04	00	d	S	Chan ID Travel		vel	

Data Structure:

field	description	format
Chan Ident	The channel being addressed.	word
Travel	The max travel of the actuator associated with the specified channel in the range 0 to 65535 (0 to FFFF). The travel is read from a calibration resistor and is returned in real world units, steps of 100nm.	

Example: Get the maximum travel.

TX 51, 06, 04, 00, 01, A2, 01, 00, C8, 00

Header: 51, 06, 04, 00, A2, 01: Get_Max Travel, 04 byte data packet, d=A2 (i.e. 22 ORed with 80), s=01 (PC). Channel 1: 01, 00: Travel: 00C8 (200 i.e. 20 μm)

MGMSG_PZ_SET_IOSETTINGS	0x0670
MGMSG_PZ_REQ_IOSETTINGS	0x0671
MGMSG_PZ_GET_IOSETTINGS	0x0672

Function:This function is used to set various I/O settings as described below.The settings can be saved (persisted) to the EEPROM by calling the
MGMSG_PZ_SET_EEPROMPARAMS function.

SET:

Command structure (16 bytes)

6 byte header followed by 10 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder			Data					
70	06	0A	00	d	S	Chan Ident AmpCurrentLim AmpLPFilte				LPFilter	

12	13	14	15
12	15	14	15
	L	Data	
Feedb	ackSig	BNCTrig	gORLVOut

Data Structure:

field	description	format
Chan Ident	The channel being addressed is always P_MOD_CHAN1	word
	(0x01) encoded as a 16-bit word (0x01 0x00)	
AmpCurrentLim	This parameter sets the maximum current output for the	word
	HV amplifier circuit as follows:	
	CURRENTLIMIT_100MA 0x00	
	CURRENTLIMIT_250MA 0x01	
	CURRENTLIMIT_500MA 0x02	
AmpLPFilter	This parameter sets the value of the hardware low pass	word
	filter applied to the HV amplifier output channels. It can	
	be used to improve stability and reduce noise on the HV	
	outputs. It is not channel specific and the Chan Ident	
	parameter is ignored for this particular setting. Values are	
	set as follows:	
	OUTPUTLPFILTER_10HZ 0x00	
	OUTPUTLPFILTER_100HZ 0x01	
	OUTPUTLPFILTER_5KHZ 0x02	
	OUTPUTLPFILTER_NONE 0x03	
FeedbackSig	For future use. The feedback signal type is locked at AC	
	(strain gauge) and cannot be changed at this time.	
BNCTrigORLVOut	The Control IO BNC connectors on the rear panel are dual	
	function. When set to Low Voltage (LV) outputs they	
	mirror the voltage on the Piezo drive HV connectors and	
	can be connected to an oscilloscope for monitoring	
	purposes. When set to Trigger mode they provide the	
	trigger input and output connections. This function is	
	used to set the mode of the rear panel BNC connectors as	
	follows:	
	BNCMODE_TRIG Trigger Output 0x0000	
	BNCMODE_LVOUT LV Output 0xFFFF	

REQ:

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
71	06	01	00	d	S		

GET:

Response structure (16 bytes)

6 byte header followed by 10 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder			Data					
72	06	0A	00	d	S	Chan Ident AmpCurrentLim AmpLPFilt				LPFilter	

12	13	14	15			
Data						
Feedb	ackSig	BNCTrig	gORLVOut			

See SET message for structure.

Issue 40

MGMSG_PZ_SET_OUTPUTMAXVOLTS MGMSG PZ REQ OUTPUTMAXVOLTS MGMSG_PZ_GET_OUTPUTMAXVOLTS

0x0680 0x0681 **0x0682**

Function: The piezo actuator connected to the unit has a specific maximum operating voltage range: 75, 100 or 150 V. This function sets the maximum voltage for the piezo actuator associated with the specified channel.

SET:

Command structure (12 bytes) 6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder			Data					
80	06	06	00	d	S	Chan Ident Voltage Flags				igs	

Data Structure:

field	description	format
Chan Ident	The channel being addressed.	word
Voltage	This parameter sets the maximum output to the value	word
	specified, in 1/10 volt steps between 0 and 1500 (i.e. 0 to	
	150 V).	
Flags	These flags tell the Thorlabs server certain parameters	word
	relating to the stage and controller combination. They are	
	not relevant to the SET command and are only used in the	
	GET_OUTPUTMAXVOLTS message	

Note. When the SET_OUTPUTMAXVOLTS message is sent, a GET_OUTPUTMAXVOLTS message is automatically returned. This is to inform the server that the max output voltage has changed. Similarly, a GET_MAXTRAVEL message is also returned to tell the server the new max travel value.

Example: Set the max output voltage to 100V.

TX 80, 06, 06, 00, D0, 01, 01, 00, E8, 03, 08, 00

Header: 80, 06, 06, 00, D0, 01: Set_OutputMaxVolts, 06 byte data packet, d=D0 (i.e. 50 ORed with 80 i.e. generic USB device), s=01 (PC). Channel 1: 01, 00: Voltage: 03E8 (1000 i.e. 100V) Flags: N/A

REQ: Command structure (6 bytes):

0	1	2	3	4	5		
header only							
81	81 06 01 00 d						

GET:

Response structure (12 bytes) 6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header						Data				
82	06	06	00	d	S	Chan Ident Voltage Flags				igs	

Data Structure:

field	description	format
Chan Ident	The channel being addressed.	word
Voltage	This parameter sets the maximum output to the value	word
	specified,either 750, 1000 or 1500 (i.e. 75, 100 or 150 V).	
Flags	These flags tell the Thorlabs server certain parameters	word
	relating to the stage and controller combination.	
	The meaning of the individual bits (flags) of the 16 bit	
	integer value is as follows:	
	0x01 For Future Use	
	0x02 VOLTAGELIMIT_75V 75V limit	
	0x04 VOLTAGELIMIT_100V 100V limit	
	0x05 VOLTAGELIMIT_150V 150V limit	

Example: Set the max output voltage to 100V.

TX 82, 06, 06, 00, D0, 01, 01, 00, E8, 03, 08, 00

Header: 80, 06, 06, 00, D0, 01: Get_MaxOutputVolts, 06 byte data packet, d=D0 (i.e. 50 ORed with 80 i.e. generic USB device), s=01 (PC). Channel 1: *01, 00*: Voltage: 03E8 (1000 i.e. 100V) Flags: 08, 00: 150 V max voltage

0x0683 0x0684 **0x0685**

MGMSG_PZ_SET_TPZ_SLEWRATES
MGMSG_PZ_REQ_TPZ_SLEWRATES
MGMSG_PZ_GET_TPZ_SLEWRATES

Function: When stages with delicate internal mechanisms are being driven, it is possible that sudden large changes to the drive voltage could cause damage. This function is used to limit the rate of change of the drive voltage. Different limits may be set for open loop and closed loop operating modes. Note. The controller is loaded at the factory with default values suitable for driving legacy piezo stages. For newer generation stages, the slew rate is read in automatically. Consequently, these parameters should not require adjustment under normal operating conditions.

SET:

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header							Da	ıta		
83	06	06	00	d	S	Chan Ident SlewOpen Sle			SlewC	losed	

Data Structure:

field	description	format
Chan Ident	The channel being addressed.	word
SlewOpen	This parameter sets the maximum slew rate when operating in open loop mode. Values are set in the range 0 to 32767, where 0 disables the limit, and 1 is the slowest rate. Values are calculated in V/ms as follows: Slew Rate = <u>Value x Max Voltage (i.e. 75, 100 or 150 V)</u> 19000	word
SlewClosed	This parameter sets the maximum slew rate when	word
	operating in closed loop mode.	
	Values are calculated as above	

Example: Set the open and closed max slew rates to 10V/ms for a 150V piezo.

TX 83, 06, 06, 00, D0, 01, 01, 00, F2, 04, F2, 04

Header: 80, 06, 06, 00, D0, 01: Set SlewRates, 06 byte data packet, d=D0 (i.e. 50 ORed with 80 i.e. generic USB device), s=01 (PC). Channel 1: 01, 00: SlewOpen: F2, 04 (10V/ms i.e. 1266 x 150 / 19000) SlewClosed: F2, 04

REQ:

Command structure (6 bytes):

0	1	2	3	4	5				
header only									
84	84 06 01 00 d								

GET:

Response structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header							Da	ıta		
85	06	06	00	d	S	Chan Ident SlewOpe			Open	SlewC	losed

See SET message for structure.

MGMSG_PZ_SET_LUTVALUETYPE:

0x0708

Function:It is possible to use the controller in an arbitrary Waveform
Generator Mode (WGM). Rather than the unit outputting an
adjustable but static voltage or position, the WGM allows the user
to define a voltage or position sequence to be output, either
periodically or a fixed number of times, with a selectable interval
between adjacent samples. This waveform generation function is
particularly useful for operations such as scanning over a particular
area, or in any other application that requires a predefined
movement sequence.The waveform is stored as values in an array, with a maximum of
8000 samples per channel. The samples can have the meaning of
voltage or position; if open loop operation is specified when the
samples are output, then their meaning is voltage and vice versa, if

the channel is set to closed loop operation, the samples are interpreted as position values. If the waveform to be output requires less than 8000 samples, it is sufficient to download the desired number of samples.

This message specifies whether the samples output from the LUT are voltage or position values.

TX structure (6 bytes):

0	1	2	3	4	5					
header only										
08	07	LUTType	00	d	S					

Data Structure:

field	description	format
LUTType	The LUT value type:	char
	0x01 LUT values are Voltage	
	0x02 LUT values are position	

Example: Set the LUT value type to Volts.

TX, 08,07,01,00,50,01

Notes on using this message.

This method must be called BEFORE the LUT values are downloaded.

The LUT values are scaled to either voltage or position while the LUT is being downloaded. If the value type needs to be changed during operation (e.g. the system was in open loop with volts type selected, but now needs to change to closed loop with position type) the message must be called again, and the LUT values downloaded again.

MGMSG_KPZ_SET_KCUBEMMIPARAMS MGMSG_KPZ_REQ_KCUBEMMIPARAMS MGMSG_KPZ_GET_KCUBEMMIPARAMS

0x07F0 0x07F1 0x07F2

This message is applicable only to KPZ101 units

Function:This message is used to configure the operating parameters of the
top panel wheel (Joystick) and the display.

SET

Command structure (40 bytes)

6 byte header followed by 34 byte data packet.

0	1	2	3	4	5	6	7	8	9	10	11		
		hea	ıder					Do	nta				
FO	07	22	00	d	S	Cha	nnel	JSM	ode	JSVoltG	earbox		
12	13	14	15	16	17	18	19	20	21	22	23	24	25
	Data												
	JSVolt	tStep		DirS	ense	PresetVolt1			PresetVolt2				
26	27	28	29	30	31	32	33	34	35	36	37	38	39
	Data												
DispBri	ghtness	DispTi	meout	DispDi	mLevel	Reserved Reserved Reserved		erved	Reserved				

Data Structure:

field	description	format
Channel	The channel being addressed is always P_MOD_CHAN1 (0x01)	word
	encoded as a 16-bit word (0x01 0x00)	
JSMode	This parameter specifies the operating mode of the wheel/joy	word
	stick as follows:	
	0x01 Voltage Mode - Deflecting the wheel changes the drive	
	voltage. The change is proportional to the deflection. The rate	
	of change is set in the JSVoltGearbox parameter that follows.	
	0x02 Jog Mode - Deflecting the wheel initiates a jog move,	
	using the parameters specified by the JSVoltStep parameter.	
	One jog step per click of the wheel.	
	0x03 Go To Voltage Mode - Deflecting the wheel starts a	
	move from the current position to one of the two predefined	
	"teach" positions. The teach positions are specified as a drive	
	voltage in the PresetVolt1 and PresetVolt2 parameters.	
JSVoltGearbox	The rate of change of voltage, when the JSMode parameter is	word
	set to Voltage Adjust Mode.	
	0x01 - Voltage adjusts at a high rate, i.e. 10 steps per click	
	0x02 - Voltage adjusts at a medium rate, i.e. 5 steps per click	
	0x03 - Voltage adjusts at a low rate, i.e. 1 step per click	
JSVoltStep	The voltage step size when JSMode is set to Jog Mode.	long

DirSense	This parameter specifies the direction of a move initiated by the	word
	velocity wheel as follows:	
	0 Wheel disabled.	
	1 Upwards rotation of the wheel results in an increased voltage.	
	2 Upwards rotation of the wheel results in a decreased voltage.	
PresetVolt1	The preset voltage 1 when operating in Go to Voltage mode.	long
PresetVolt2	The preset voltage 2 when operating in Go to Voltage mode.	long
DispBrightness	In certain applications, it may be necessary to adjust the	word
	brightness of the LED display on the top of the unit. The	
	brightness is set as a value from 0 (Off) to 100 (brightest). The	
	display can be turned off completely by entering a setting of zero,	
	however, pressing the MENU button on the top panel will	
	temporarily illuminate the display at its lowest brightness setting	
	to allow adjustments. When the display returns to its default	
	position display mode, it will turn off again.	
DispTimeout	'Burn In' of the display can occur if it remains static for a long	word
	time. To prevent this, the display is automatically dimmed after	
	the time interval specified in the DispTimeout parameter has	
	elapsed. Set in minutes in the range 0 (never dimmed) to 480.	
	The dim level is set in the DispDimLevel parameter below.	
DispDimLevel	The dim level, as a value from 0 (Off) to 10 (brightest) but is also	word
	limited by the DispBrightness parameter.	

REQ:

Command structure (6 bytes):

0	1	2	3	4	5					
header only										
F1 07 Channel 00 d s										

Example:

Request the settings for the top panel wheel

TX F1, 07, 01, 00, 50, 01

GET:

Response structure (32 bytes):

0	1	2	3	4	5	6	7	8	9	10	11				
		hea	ıder					Da	Data						
F2	07	22	00	d	S	Cha	nnel	JSM	ode	JSVolte	iearbox				
12	13	14	15	16	17	18	19	20	21	22	23	24	25		
	Data														
	JSVol	tStep		DirS	ense	PresetVolt1				PresetVolt2					
										•					
26	27	28	29	30	31	32	33	34	35	36	37	38	39		
						Do	ata								
DispBr	ightness	DispTi	meout	DispDi	mLevel	Reserved		Reserved		eserved Reserved		Rese	erved	Reserved	

For structure see SET message above.

MGMSG_KPZ_SET_KCUBETRIGIOCONFIG MGMSG_KPZ_REQ_KCUBETRIGIOCONFIG MGMSG_KPZ_GET_ KCUBETRIGIOCONFIG

0x07F3 0x07F4 0x07F5

Function: The KPZ101 K-Cube piezo controller has two bidirectional trigger ports (TRIG1 and TRIG2) that can be used as a general purpose digital input/output, or can be configured to output a logic level to control external equipment.

When the port is used as an output it provides a push-pull drive of 5 Volts, with the maximum current limited to approximately 8 mA. The current limit prevents damage when the output is accidentally shorted to ground or driven to the opposite logic state by external circuity. The active logic state can be selected High or Low to suit the requirements of the application.

This message sets the operating parameters of the TRIG1 and TRIG2 connectors on the front panel of the unit.

Warning. Do not drive the TRIG ports from any voltage source that can produce an output in excess of the normal 0 to 5 Volt logic level range. In any case the voltage at the TRIG ports must be limited to -0.25 to +5.25 Volts.

Trigger Modes

Input Trigger Modes

When configured as an input, the TRIG ports can be used as a general purpose digital input, or for triggering a drive voltage change as follows:

0x00 The trigger IO is disabled.

0x01 General purpose logic input (read through status bits using the

PZ_GET_PZSTATUSUPDATE message).

0x02 Input trigger for voltage step up. On receipt of the trigger, the drive voltage increases by the value set in the SetKCubeMMIParams method, VoltStep parameter.

0x03 Input trigger for voltage step down. On receipt of the trigger, the drive voltage decreases by the value set in the SetKCubeMMIParams method, VoltStep parameter.

When used for triggering a move, the port is edge sensitive. In other words, it has to see a transition from the inactive to the active logic state (Low->High or High->Low) for the trigger input to be recognized. For the same reason a sustained logic level will not trigger repeated moves. The trigger input has to return to its inactive state first in order to start the next trigger.

Output Trigger Modes

When configured as an output, the TRIG ports can be used as a general purpose digital output.

0x0A General purpose logic output (set using the MOD_SET_DIGOUTPUTS message).

Trigger Polarity

The polarity of the trigger pulse is specified in the TrigPolarity parameters as follows: 0x01 The active state of the trigger port is logic HIGH 5V (trigger input and output on a rising edge).

0x02 The active state of the trigger port is logic LOW 0V (trigger input and output on a falling edge).

SET:

Command structure (28 bytes)

6 byte header followed by 22 byte data packet as follows:

0	1	2	3	4	5	6 7 8 9					11	
	header						Data					
F3	07	16	00	d	S	Cha	nnel	LMode	Trig1Polarity			
12	13	14	15	16	17	18	19	20	21			
				Do	ıta							
Trig2	Mode	Trig2P	olarity	Rese	rved	Rese	rved	Rese	erved]		
								1				
22	23	24	25	26	27							
		Da	nta									
Rese	Reserved Reserved Reserved											

Data Structure:

field	description	format
Channel	The channel being addressed is always (e.g. 0x01)	word
	encoded as a 16-bit word (0x01 0x00)	
Trig1Mode	TRIG1 operating mode:	word
Trig1Polarity	The active state of TRIG1 (i.e. logic high or logic low) .	word
Trig2Mode	TRIG2 operating mode:	word
Trig2Polarity	The active state of TRIG2 (i.e. logic high or logic low) .	word
Reserved		word

Example: Set the Trigger parameters for KPZ101 as follows: Trig1Mode – TrigIn_VoltStepUp Trig1Polarity – High Trig2Mode – Disabled Trig2Polarity – N/A

TX F3, 07, 0C, 00, D0, 01, 01, 00, 02, 00, 01, 00, 00, 00, 00, 00, 00, 00

Header: F3, 07, 0C, 00, D0, 01: Set_KCube_TriglOConfig, 12 byte data packet, d=D0 (i.e. 50 ORed with 80 i.e. generic USB device), s=01 (PC). Channel 1: 01, 00: Trig1Mode – 02, 00 TrigIn_VoltStepUp Trig1Polarity – 01,00 High Trig2Mode – 00,00 Disabled Trig2Polarity – 00,00 N/A

REQ:

Command structure (6 bytes):

0	1	2	3	4	5					
header only										
F4	07	01	00	d	S					
057										

GET:

Command structure (28 bytes) 6 byte header followed by 22 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
		hea	ıder			Data						
F5	07	16	00	d	S	Cha	nnel	Trig1	LMode	Trig1Polarity		
12	13	14	15	16	17	18	19	20	21			
				Da	ıta							
Trig2l	Mode	Trig2P	olarity	Rese	rved	Rese	rved	Rese	erved			
22	23	24	25	26	27							
	Data											
Rese	Reserved Reserved Reserved											

See SET message for structure.

MGMSG_	PZ_	SET_	TSG_	IOSETTINGS	
MGMSG_	PZ_	REQ	_TSG_	IOSETTINGS	
MGMSG_	PZ_	GET_	TSG_	IOSETTINGS	

0x07DA 0x07DB 0x07DC

Function: When the T-Cube Strain Gauge Reader is used in conjunction with the T-Cube Piezo Driver unit (TPZ001) on the T-Cube Controller Hub (TCH001), a feedback signal can be passed from the Strain Gauge Reader to the Piezo unit. High precision closed loop operation is then possible using our complete range of feedback-equipped piezo actuators.

This method is used to select the way in which the feedback signal is routed back to the Piezo unit.

SET:

Command structure (20 bytes)

6 byte header followed by 14 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
	header						Data					
DA	07	0E	00	d	S	Chan Ident HubAnalogOP DisplayMo					ayMode	

12	13	14	15	16	17	18	19			
Data										
	ForceCalib Future Use Future Use									

Data Structure:

field	description	format
Chan Ident	The channel being addressed is always (e.g. 0x01)	word
	encoded as a 16-bit word (0x01 0x00)	
HubAnalogueOutput	When the T-Cube Strain Gauge Reader is used in	word
	conjunction with the T-Cube Piezo Driver unit (TPZ001)	
	on the T-Cube Controller Hub (TCH001), a feedback	
	signal can be passed from the Strain Gauge Reader to	
	the Piezo unit. High precision closed loop operation is	
	then possible using our complete range of feedback-	
	equipped piezo actuators.	
	This message is used to select the way in which the	
	feedback signal is routed back to the Piezo unit	
	If set to 0x01 HUB_ANALOGUEOUT_1, the feedback	
	signals run through all T-Cube bays.	
	If set to 0x02 HUB_ANALOGUEOUT_2, the feedback	
	signals run between adjacent pairs of T-Cube bays (i.e.	
	1&2, 3&4, 5&6). This setting is useful when several	
	pairs of Strain Gauge/Piezo Driver cubes are being	
	used on the same hub.	

Display Mode	The LED display window on the front of the unit (and the display on the GUI panel) can be set to display the strain gauge signal as a position (microns), a voltage (Volts) or as a force (Newtons).	word
	This parameter sets the display mode as follows If set to 0x01 DISPUNITS_POSITION, the display shows the strain gauge signal as a position in microns. If set to 0x02 DISPUNITS_VOLTAGE, the display shows the strain gauge signal as a voltage. If set to 0x03 DISPUNITS_FORCE, the display shows the	
	strain gauge signal as a force	
ForceCalib	If using a force sensor with the TSG001 unit, the Force Sensor has a specific maximum operating force. This parameter sets the force calibration factor in steps of 0.001 N between 1 and 1000. The default setting for this parameter is H7530 (30,000), to be compatible with our FSC102 force sensor, which is specified to read forces up to 30N.	word

Example: Set the IO settings as follows.

TX DA, 07, 0E, 00, D0, 01, 01, 00, 01, 00, 02, 00, 30, 75, 00, 00, 00, 00, 00, 00

Header: DA, 07, 0E, 00, D0, 01: Set_TSG_IOSettings, 14 byte data packet, d=D0 (i.e. 50 ORed with 80 i.e. generic USB device), s=01 (PC). Channel 1: 01, 00: HubAnalogueOutput: 01, 00 (Hub Analogue Output A) Display Mode: 02, 00 (Display Voltage Force Calibration: 30, 75 30,000 x 0.001 = 30 N

REQ:

Command structure (6 bytes):

0	1	2	3	4	5					
header only										
DB 07 01 00 d s										

GET:

Response structure (20 bytes)

6 byte header followed by 14 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder			Data					
DC	07	OE	00	d	S	Chan Ident HubAnalogOP DisplayM				ayMode	

12	13	14	15	16	17	18	19			
	Data									
	Force	Calib		Futur	e Use	Future	e Use			

See SET message for structure.

MGMSG_PZ_REQ_TSG_READING MGMSG_PZ_GET_TSG_READING

0x07DD 0x07DE

 Function:
 This message returns the current reading of the strain gauge

 The units applicable are dependent on the current operating mode

 (set using the DisplayMode parameter of the <u>SET_TSG_IOSETTINGS</u> message.

REQUEST:

Command structure (6 bytes)

0	1	2	3	4	5					
header only										
DD	07	Chan	00	d	S					
		Ident								

GET:

Response structure (12 bytes) 6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
	header						Data					
DE	07	06	00	d	S	Chan Ident Reading Sm		Smoo	othed			

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
Reading	The current reading of the strain gauge unit. If the unit is operating in Position mode, then the returned value is a position in microns. If the unit is in Voltage mode, then the returned reading is a Voltage. If the controller is in 'Force Sensing Mode' then the parameter returns a force value in Newtons. Values are returned in the range -32767 to 32768, which corresponds to -100% to 100% of the maximum voltage, travel or force. The returned data values are sampled at 500Hz. This is particularly useful in touch probe or force sensing applications where rapid polling of the force reading is important. Display mode and Max Force are described in the MGMSG_PZ_GET_TSG_IOSETTINGS message. Max Travel is described in the MGMSG_PZ_GET_MAXTRAVEL message.	short
Smoothed		word

Example: Get the readings for channel 1.

RX DE, 07, 06, 00, 81, 50, 01, 00, 52, 00, 50, 00,

Header: DE, 07, 06, 00, 81, 50: Get_TSG_Readings, 6 byte data packet, d=D0 (i.e. 01 ORed with 80 i.e. PC), s=50 (Generic USB device). *Channel 1*: 01, 00 *Reading*: 52, 00 (i.e. 82) *Smoothed*: 52, 00

MGMSG_KSG_SET_KCUBEMMIPARAMS MGMSG_KSG_REQ_KCUBEMMIPARAMS MGMSG_KSG_GET_KCUBEMMIPARAMS

0x07F6 0x07F7 0x07F8

Function:

Used to set the intensity of the OLED display on the TOP of the KSG101 unit. Intensity is set as a percentage of full brightness in the range 0 (off) to 100%. Also used to set the display time out and dim level as described below.

SET:

Command structure (14 bytes)

6 byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13
header								Da	ita				
F6	07	08	00	d	S	ChanIdent		DispIntensity		DispTi	meout	DispDir	mLevel

Data Structure:

field	description	format
Chanldent	The channel being addressed (i.e. 1)	word
DispIntensity	In certain applications, it may be necessary to adjust the brightness of the LED display on the top of the unit. The brightness is set as a value from 0 (Off) to 100 (brightest). The display can be turned off completely by entering a setting of zero, however, pressing the MENU button on the top panel will temporarily illuminate the display at its lowest brightness setting to allow adjustments. When the display returns to its default position display mode, it will turn off again.	word
DispTimeout	'Burn In' of the display can occur if it remains static for a long time. To prevent this, the display is automatically dimmed after the time interval specified in the DispTimeout parameter has elapsed. Set in minutes in the range 0 (never dimmed) to 480. The dim level is set in the DispDimLevel parameter below.	word
DispDimLevel	The dim level, as a value from 0 (Off) to 10 (brightest) but is also limited by the DispBrightness parameter.	word

Example: Set the Display intensity 50%, the Time out to 5 minutes and the dim level to 20%. .

TX F6, 07, 08, 00, D0, 01, 01, 00, 32, 00

Header: F6, 07, 04, 00, D0, 01: Set_KCUBEMMIPARAMS, 08 byte data packet, Generic USB Device. *ChanIdent: 01, 00*: Sets channel 1

DispIntensity: 32, 00: Sets the display brightness to 50% *DispTimeout: 05, 00*: Sets the display brightness to 5 minutes

DispDimLevel: 14, 00: Sets the display brightness to 20%

REQ:

Command structure (6 bytes):

0 1 2 3 4 5										
	header only									
F7	F7 07 01 00 d s									

Example:

Request the display intensity

TX F6, 07, 01, 00, 50, 01

GET:

Command structure (14 bytes) 6 byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13
	header						Data						
F8	07	08	00	d	S	ChanIdent		DispInt	ensity	DispTi	meout	DispDi	mLevel

See SET for data structure.

MGMSG_KSG_SET_KCUBETRIGIOCONFIG MGMSG_KSG_REQ_KCUBETRIGIOCONFIG MGMSG_KSG_GET_ KCUBETRIGIOCONFIG

0x07F9 0x07FA 0x07FB

Function: The KSG101 K-Cube strain gauge reader has two bidirectional trigger ports (TRIG1 and TRIG2) that can be used as a general purpose digital input/output, or can be configured to output a logic level to control external equipment.

When the port is used as an output it provides a push-pull drive of 5 Volts, with the maximum current limited to approximately 8 mA. The current limit prevents damage when the output is accidentally shorted to ground or driven to the opposite logic state by external circuity. The active logic state can be selected High or Low to suit the requirements of the application.

This message sets the operating parameters of the TRIG1 and TRIG2 connectors on the front panel of the unit.

Warning. Do not drive the TRIG ports from any voltage source that can produce an output in excess of the normal 0 to 5 Volt logic level range. In any case the voltage at the TRIG ports must be limited to -0.25 to +5.25 Volts.

The Trigger can be used to monitor a specific area, and output a signal when the device moves away from this region of interest. This signal can then be used to give a warning by sounding a bell or turning on an LED. The triggers are set using a combination of the Trig1Mode and Trig2Mode parameters, and the LowerLim and UpperLim parameters.

Trigger Modes

0x00 - TRIG_DISABLED The trigger IO is disabled

0x01 - TRIGIN_GPI General purpose logic input (read through status bits using the PZ_GET_PZSTATUSUPDATE message).

0x0A - TRIGOUT_GPO General purpose logic output (set using the MOD_SET_DIGOUTPUTS message).

0x0B - TRIG_OUT_LESSTHANLOWERLIMIT The trigger is active when the strain gauge input is less than the lower limit, set in the LowerLim parameter.

0x0C TRIG_OUT_MORETHANLOWERLIMIT - The trigger is active when the strain gauge input is greater than the lower limit.

0x0D TRIG_OUT_LESSTHANUPPERLIMIT - The trigger is active when the strain gauge input is less than the upper limit, set in the UpperLim parameter.

0x0E TRIG_OUT_MORETHANUPPERLIMIT - The trigger is active when the strain gauge input is greater than the upper limit.

0x0F TRIG_OUT_BETWEENLIMITS - The trigger is active when the strain gauge input is between the two limits.

0x10 TRIG_OUT_OUTSIDELIMITS - The trigger is active when the strain gauge input is outside either of the two limits.

Trigger Polarity

The polarity of the trigger pulse is specified in the TrigPolarity parameters as follows: 0x01 The active state of the trigger port is logic HIGH 5V (trigger input and output on a rising edge).

0x02 The active state of the trigger port is logic LOW 0V (trigger input and output on a falling edge).

SET:

Command structure (28 bytes)

6 byte header followed by 22 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
	header						Data					
F9	07	16	00	d	S	Chan Ident Trig1Mode Trig1Polarity						
12	13	14	15	16	17	18	19	20	21	22	23	
					D	ata						
Trig2	Mode	Trig2P	olarity	LowerLim				Uppe	rLim			

24	24 25 2							
Data								
Smoothin	SmoothingSamples Reserved							

Data Structure:

field	description	format
Chan Ident	The channel being addressed is always (e.g. 0x01) encoded as a 16-bit word (0x01 0x00)	word
Trig1Mode	TRIG1 operating mode:	word
Trig1Polarity	The active state of TRIG1 (i.e. logic high or logic low) .	word
Trig2Mode	TRIG2 operating mode:	word
Trig2Polarity	The active state of TRIG2 (i.e. logic high or logic low) .	word
LowerLim	The lower limit described in the trigger mode details above, set in the range -100 to 100.	Long
UpperLim	The upper limit described in the trigger mode details above, set in the range -100 to 100.	Long
SmoothingSamples	The reading shown on the display is an average of the number of samples set in the SmoothingSamples parameter, between 0 and 1000. As a new sample is taken, the earliest sample is discarded.	word
Reserved		

Example: Set the Trigger parameters for KSG101 as follows: Trig1Mode – TrigOut_LESSTHANLOWERLIMIT Trig1Polarity – High Trig2Mode – Disabled Trig2Polarity – N/A LowerLim – Zero UpperLim – 100 SmoothingSamples - 1000

```
Header: F9, 07, 16, 00, D0, 01: Set_KCube_TrigIOConfig, 22 byte data packet, d=D0 (i.e. 50
ORed with 80 i.e. generic USB device), s=01 (PC).
Channel 1: 01, 00:
Trig1Mode – 0B, 00
                       TrigOut LESSTHANLOWERLIMIT
Trig1Polarity – 01,00
                       High
Trig2Mode – 00,00
                       Disabled
Trig2Polarity – 00,00
                       N/A
LowerLim - 00,00,00,00 Zero
UpperLim – 64,00
                      i.e. 100
SmoothingSamples – E8, 03
                              i.e. 1000
```

REQ:

Command structure (6 bytes):

0 1 2 3 4 5										
header only										
FA 07 01 00 d s										

GET:

Command structure (28 bytes) 6 byte header followed by 22 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
	header						Data					
FB	07	16	00	d	S	Chan Ident Trig1Mode Trig1Po					Polarity	
12	13	14	15	16	17	18	19	20	21	22	23	
					D	ata						
Trig2I	Vode	Trig2P	olarity	LowerLim			UpperLim					

24 25		26	27		
Data					
Smoothin	Res	erved			

See SET message for structure.

NanoTrak Control Messages

Introduction

The 'NanoTrak' ActiveX Control provides the functionality required for a client application to control one or more NanoTrak auto-alignment controller products. The NanoTrak system comes in benchtop (BNT001), T-Cube (TNA001) and 19" rack modular (MNA601) formats, all of which are covered by the NanoTrak ActiveX Control.

The messages of the NanoTraks object can then be used to perform activities such as latching/unlatching, reading power levels, obtaining/setting circle size and position and determining if 'NanoTracking' is currently taking place.

For details on the use of the NanoTrak controller, and information on the principles of operation, refer to the NanoTrak Operating Guide.

NOTE. The NanoTrak can be set to operate as a piezo amplifier. When operated in this mode, some piezo control messages may also be sent or returned.

MGMSG_PZ_SET_NTMODE

0x0603

Function:The NanoTrak unit can be used as a standard piezo amplifier, or as a
NanoTrak Auto-alignment unit. This message sets the unit to piezo
operation, or one of the NanoTrak operating modes as described
below. The mode of operation is set in byte 2 of the message as
follows:

SET:

Command structure (6 bytes):

0	1	2	3	4	5	
header only						
03	06	State	00	d	S	

Data Structure:

field	description	format
State	01 Sets the unit to Piezo mode.	short
	Note. The hardware unit must be rebooted before changes	
	to operating mode can take effect.	
	Note. When the HW operating mode of a NanoTrak unit has	
	been changed to Piezo operation, then the Piezo ActiveX	
	control must be used to communicate with the unit. Use the	
	same serial number as used on the NanoTrak control in	
	order to establish communication with the unit.	
	02 Latch mode. In this mode, scanning is disabled and	
	the piezo drives are held at the present position.	
	03 Track mode. In this mode, the NanoTrak detects any	
	drop in signal strength resulting from misalignment of the	
	input and output devices, and makes vertical and horizontal	
	positional adjustments to maintain the maximum	
	throughput.	
	04 Horizontal Track mode. In this mode, the NanoTrak	
	detects any drop in signal strength resulting from	
	misalignment of the input and output devices, and makes	
	horizontal positional adjustments to maintain the maximum	
	throughput.	
	05 Vertical Track mode. In this mode, the NanoTrak	
	detects any drop in signal strength resulting from	
	misalignment of the input and output devices, and makes	
	vertical positional adjustments to maintain the maximum	
	throughput.	

Example: Set the tracking mode to Latch

TX 03, 06, 02, 00, 50, 01,

MGMSG_PZ_REQ_NTMODE MGMSG_PZ_GET_NTMODE

Function:The NanoTrak unit can be used as a standard piezo amplifier, or as a
NanoTrak Auto-alignment unit. This message gets the present
operating mode of the unit as described below. The mode of
operation is returned in byte 2 of the message as follows:

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5	
header only						
04	06	00	00	d	S	

GET:

Command structure (6 bytes):

0	1	2	3	4	5	
header only						
05	06	State	Mode	d	S	

Data Structure:

field	description	format
State	The Tracking state	short
	01 NanoTracking off. The unit is in Piezo mode.	
	02 Latch mode. In this mode, scanning is disabled and	
	the piezo drives are held at the present position.	
	03 Tracking ON No Signal. In this mode, the NanoTrak	
	is tracking but the signal power is below the threshold	
	power set by the user in the <u>Set_NTTrackThreshold</u>	
	message.	
	04 Tracking ON, Signal Attained. In this mode, the	
	threshold power has been detected and the NanoTrak is	
	tracking normally.	
Mode	The Tracking Mode.	
	01 Dual axis (X and Y) tracking.	
	02 Horizontal (X) axis tracking.	
	03 Vertical (Y) axis tracking.	

Example

TX 05, 06, 04, 01, 01, 50 Mode is Tracking Signal (0x04) and dual axis (Both X and Y tracking) (0x01)

0x0604 0x0605

MGMSG_PZ_SET_NTTRACKTHRESHOLD MGMSG_PZ_REQ_NTTRACKTHRESHOLD MGMSG_PZ_GET_NTTRACKTHRESHOLD

0x0606
0x0607
0x0608

Function:This message sets the tracking threshold of the NanoTrak. The value
is set in Amps, and is dependent upon the application. Typically, the
value is set to lie above the 'noise floor' of the particular physical
arrangement. When the input signal level exceeds this value, the
tracking LED is lit on the GUI panel. Note there is no guarantee that
tracking is taking place if this threshold value is set inappropriately.
E.g. if the tracking threshold is set to below the noise floor, then the
GUI will show a lit tracking LED even though no tracking is taking
place.

SET:

Command structure (10 bytes) 6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
	header						Do	nta	
06	06	04	00	d	S	ThresholdAbsReading		ng	

Data Structure:

field	description	format
ThresholdAbsReading	The tracking threshold of the NanoTrak. This is the absolute TIA reading (PIN current).	Float
	The value set in Amps as a 4-byte floating point number in the range 1×10^{-9} to 1×10^{-3} (i.e. 1 nA to 1 mA).	

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5	
header only						
07	06	00	00	d	S	

GET:

Command structure (10 bytes):

0	1	2	3	4	5	6	7	8	9
	header						Do	ıta	
08	06	04	00	d	S	ThresholdAbsReading			ng

See SET for structure.

MGMSG_PZ_SET_NTCIRCHOMEPOS	0x0609
MGMSG_PZ_REQ_NTCIRCHOMEPOS	0x0610
MGMSG_PZ_GET_NTCIRCHOMEPOS	0x0611

 Function:
 This message sets the circle home position to the horizontal and vertical coordinates specified in the CircHomePosA and CircHomePosB parameters respectively.

 The home position is used when the Move_NTCircToHomePos message is called

SET:

Command structure (10 bytes)

6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
header						Data			
06	06	04	00	d	S	CircHomePosA CircHomeF		lomePosB	

Data Structure:

field	description			
CircHomePosA	The horizontal co-ordinate of the circle home position, in the range 0 to 65535 (0 to 100% of output voltage or 0 to 10 NanoTrak units).	word		
CircHomePosB	rcHomePosB The vertical co-ordinate of the circle home position, in the range 0 to 65535 (0 to 100% of output voltage or 0 to 10 NanoTrak units).			

Example: Set the NanoTrak circle home position to be screen centre.

TX 09 06, 04, 00, D0, 01, FF, 7F, FF, 7F,

Header: 09, 06, 04, 00, D0, 01: Set_NTCircHomePos, 04 byte data packet, Generic USB Device.

CircHomePosA: FF, 7F: Sets the horizontal co-ordinate to 32767 (i.e. 50% of O/P Voltage or 5 NT units)

CircHomePosB: FF, 7F: Sets the vertical co-ordinate to 32767 (i.e. 50% of O/P Voltage or 5 NT units)

REQUEST:

Command structure (6 bytes):									
0	1	2	3	4	5				

header only								
10	06	00	00	d	S			

GET:

Command structure (10 bytes):

0	1	2	3	4	5	6	7	8	9
header						Data			
11	06	04	00	d	S	CircHomePosA CircHomePos		lomePosB	

See SET for structure.
MGMSG_PZ_MOVE_NTCIRCTOHOMEPOS

0x0612

 Function:
 This message moves the circle to the 'Home' position as set by the

 Set
 NTCircHomePos

SET:

Command structure (6 bytes)

0	1	2	3	4	5			
header								
12 06 00 00 d s								

Example: Move the NanoTrak circle to the home position.

TX, 12, 06, 00, 00, 50, 01,

MGMSG_PZ_REQ_NTCIRCCENTREPOS MGMSG_PZ_GET_NTCIRCCENTREPOS

0x0613 0x0614

Function:This message obtains the current horizontal and vertical position of
the circle, together with other signal and range parameters relating
to NanoTrak operation as described below.

REQUEST:

Com	Command structure (6 bytes):									
0 1 2 3 4 5										
	header only									
13 06 01 00 d s										

GET:

Command structure (20 bytes) 6 byte header followed by 14 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
header							Da	ıta	
06	06	0E	00	d	S	CircPosA CircPosB			osB
10	11	12	13	14	15	16 17		18	19
	AbsReading				ading	Rar	nge	UnderOv	verRead

Data Structure:

field	description	format
CircPosA	The horizontal co-ordinate of the circle home position, in the range 0 to 65535 (0 to 100% of output voltage or 0 to 10 NanoTrak units).	word
CircPosB	The vertical co-ordinate of the circle home position, in the range 0 to 65535 (0 to 100% of output voltage or 0 to 10 NanoTrak units).	word
AbsReading	The absolute TIA (PIN) current or BNC voltage value at the current position. The value is returned as a 4 byte floating point value in the range 1×10^{-9} to 1×10^{-3} (i.e. 1 nA to 1 mA or 1 to 10 V). The input source, TIA or BNC is set in the <u>Set_NTFeedbackSRC</u> message.	float
RelReading	The relative signal strength at the current position, in the range 0 to 32767 (i.e. 0 to 100% of the range currently selected). This value matches the length of the input signal bargraph on the GUI panel. (e.g. if the 3 μ A range is currently selected, then a RelReading value of 16384 (50%) equates to 1.5 μ A).	word
Range	The NanoTrak unit is equipped with an internal trans-impeder amplifier (TIS) circuit (and associated range/power level disp and control buttons in the GUI). This amplifier operates whe external input signal is connected to the Optical/PIN connect on the rear panel. There are 14 range settings (1 - 14) that can be used to select the best range to measure the input signal (displayed on the GUI panel relative input signal bar and display).	olays n an tor an

	Note. Range 1								
	TNA001 T-Cub								
		r returns the input sign	al range curr	ently selected					
	defined as follo								
	uchined as roll.								
	Range	Range BNT, TNA, MNA KNA Returned							
	Range 1	3 nA	5 nA	0x03					
	Range 2	10 nA	16.6 nA	0x04					
	Range 3	30 nA	50 nA	0x05					
	Range 4	100 nA	166 nA	0x06					
	Range 5	300 nA	500 nA	0x07					
	Range 6	1 μΑ	1.65 μA	0x08					
	Range 7	3 μΑ	5.0 μΑ	0x09					
	Range 8	10 µA	16 µA	0x0A					
	Range 9	30 µA	50 µA	0x0B					
	Range 10	100 µA	166 µA	0x0C					
	Range 11	300 µA	500 µA	0x0D					
	Range 12	1 mA	1.66 m	0x0E					
	Range 13	3 mA	5 mA	0x0F					
	Range 14	10 mA	N/A	0x10					
UnderOverRead	This paramete	r returns a value that ic	lentifies whe	ther the unit	word				
	is under readir	ng or over reading the i	nput signal a	s follows:					
	0x01 power	signal is within current	: TIA range						
	0x02 power	signal is under-reading	g for current	TIA					
	0x03 power	signal is over-reading f	or current TI	A range					
	e.g. if a user sp	becified range of 3 μ A is	s currently ap	plied, this					
	parameter ret	urns '0x03' (Over read)'	for input sig	nals greater					
	than 3 μA.								

Example:

RX 14, 06, 0E, 00, 81, 50, 73, 63, 2A, F3, 00, 00, 00, 00, 00, 00, 05, 00, 02, 00

Header: 14, 06, 0E, 00, 81, 50: Get_NTCircCentrePos, 14 byte data packet, Generic USB Device.

CircPosA;	0x6373	25459 (25459/65535 = 39%)
CircPosB;	0xF32A	62250 (62250/65535 = 95%)
AbsReading;	0x0000000	0V
RelReading;	0x0000	0V
Range;	0x0005	Range 3 (i.e. 30 nA)
UnderOverRead;	0x0002	Signal is under reading for range.

MGMSG_PZ_SET_NTCIRCPARAMS MGMSG_PZ_REQ_NTCIRCPARAMS MGMSG_PZ_GET_NTCIRCPARAMS

0x0618 0x0619 0x0620

Function:This message obtains sets various scanning circle parameters as
described below.

SET:

Command structure (18 bytes)

6 byte header followed by 12 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
header							Da	ıta	
18	06	0C	00	d	S	CircDiaMode CircDiaS		aSW	
10	11	12		13	14	15	16	17	
	Data								
CircOs	scFreq	AbsPwrMinCircDia			AbsPwrM	axCircDia	AbsPv	vrAdjustTy	/pe

Data Structure:

field	description	format
CircDiaMode	This parameter allows the different modes of circle diameter adjustment to be enabled and disabled as follows:	word
	0x01 NTCIRCDIA_SW the circle diameter remains at the value set using the CircDiaSW parameter below.	
	0x02NTCIRCDIA_ABSPWRthe circle diameter isset by absolute power input value (depending on adjustment algorithm selected in the AbsPwrAdjustType parameter - see below)0x03NTCIRCDIA_LUT0x03NTCIRCDIA_LUTthe circle diameter is adjusted automatically, using a table of TIA range dependent values (set using the SetCircDiaLUT message.	
CircDiaSW	This parameter sets the NT circle diameter if NTCIRCDIA_SW (0x01) is selected in the CircDiaMode parameter above. The diameter is set in the range 0 to 65535, which relates to 0% to 100% output voltage –(i.e. 0 to 10 NT units).	word
CircOscFreq	 This parameter contains the number of samples taken in one revolution of the scanning circle and is used to set the scanning frequency of the NanoTrak circle. The circle scanning frequency lies in the range 17.5 Hz to 87.5 Hz for TNA001 and 20 Hz to 190 Hz for the BNT001. The factory default setting for the scanning frequency is 43.75Hz. This means that a stage driven by the NanoTrak makes 43.75 circular movements per second. Different frequency settings allow more than one NanoTrak to be used in the same alignment scenario. The scanning frequency is derived from the NanoTrak sampling frequency of 7000 Hz and the CircOscFreq 	word

	value which is calculated as follows:	
	CircOscFreq = 7000 / scanning frequency	
	Note. The CircOscFreq parameter must be entered as a	
	multiple of '4'.	
AbsPwrMinCircDia	The minimum circle diameter. Applicable only if the	word
	CircDiaMode parameter above is set to	
	NTCIRCDIA_ABSPWR (0x02). The diameter is set in the	
	range 0 to 32767, which relates to 0% to 50% output	
	voltage –(i.e. 0 to 5 NT units).	
AbsPwrMaxCircDia	The maximum circle diameter. Applicable only if the	word
	CircDiaMode parameter above is set to	
	NTCIRCDIA_ABSPWR (0x02). The diameter is set in the	
	range 0 to 32767, which relates to 0% to 50% output	
	voltage –(i.e. 0 to 5 NT units).	
AbsPwrAdjustType	This parameter sets the adjustment type and is	word
	applicable only if CircDiaMode parameter above is set to	
	NTCIRCDIA_ABSPWR (0x02).	
	0x01 NTABSPWRCIRCADJUST_LIN inverse linear	
	adjustment	
	0x02 NTABSPWRCIRCADJUST_LOG inverse log	
	adjustment	
	0x03 NTABSPWRCIRCADJUST_X2 inverse square	
	adjustment	
	0x04 NTABSPWRCIRCADJUST_X3 inverse cube	
	adjustment	

Example

TX 18, 06, 0C, 00, D0, 01, 01, 00, 9A, 19, A0, 00, CC, 0C, 99, 19, 01, 00

Header: 18, 06, 0C, 00	, <i>D0, 01</i> : Set_NT	CircPara	ms, 12 byte data packet, Generic USB Device.				
CircDiaMode; 0x0001 Software setting mode							
CircDiaSW;	0x199A	6554	6554/65535 = 10% of O/P voltage (1 NT				
unit)							
CircOscFreq;	0x00A0	160	7000/160 = 43.75 Hz				
AbsPwrMinCircDia;	0x0CCC	3276	5% or 0.5 NT units				
AbsPwrMaxCircDia;	0x1999	6553	10% or 1 NT unit				
AbsPwrAdjustType;	0x0001	inverse	e linear adjust type.				

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5			
header only								
19 06 01 00 d s								

GET:

Command structure (18 bytes) 6 byte header followed by 12 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
header							Da	ıta	
20	06	0C	00	d	S	CircDiaMode CircDiaSW			aSW
10	11	12	:	13	14	15	16	17	
Data									
CircOs	scFreq	AbsPwrMinCircDia			AbsPwrM	axCircDia	AbsPv	vrAdjustTy	/pe

See SET for structure

MGMSG_PZ_SET_NTCIRCDIA

0x061A

Function:This message sets the NT circle diameter and can be used as an
alternative to the Set NTCircParams message described previously.
The diameter is set in the range 0 to 65535, which relates to 0% to
100% output voltage (i.e. 0 to 10 NT units).

SET:

Command structure (6 bytes)

0	1	2	3	4	5	
1A 06 CircDia 00 d						

Example: Set the NanoTrak circle diameter to 10% (i.e. 1 NT unit).

TX, 1A, 06, 99, 19, 50, 01,

H1999 = 6553 6553/65535 = 10%

0x0621

0x0622 0x0623

MGMSG_PZ_SET_NTCIRCDIALUT	
MGMSG_PZ_REQ_NTCIRCDIALUT	
MGMSG_PZ_GET_NTCIRCDIALUT	

Function:This message enables a look up table (LUT) of circle diameter values
to be specified as a function of input range. When automatic LUT
diameter adjustment mode is enabled (using the CircDiaMode
parameter in the Set NTCircParams message), the system uses
values in this LUT to modify circle diameter in relation to the input
range currently selected.
This LUT diameter adjustment mode allows appropriate circle

This LUT diameter adjustment mode allows appropriate circle diameters to be applied on an application specific basis.

SET:

Command structure (38 bytes)

6 byte header followed by 32 byte data packet as follows:

		11	10	9	8	7	6	5	4	3	2	1	0
				Data	1					ıder	hea		
		JTVal	LL	TVal	LU	TVal	LUT	S	d	00	20	06	21
		23	22	21	20	19	18	17	16	15	14	13	12
							Data						
		JTVal	LL	TVal	LU	TVal	LUT	ΓVal	LUT	「Val	LUT	ΓVal	LUT
36	36	35	34	33	32	31	30	29	28	27	26	25	24
						ata	D						
ΓVal	LUT	Val	LUT	「Val	LUT	TVal	LUT	「Val	LUT	TVal	LUT	ΓVal	LUT

Data Structure:

field	description	format
CircDias	This parameter contains the circle diameter values for each	array
	range of the NanoTrak. The values are entered in range	
	order in a 32 byte array.	
	Note. On the BNT001 unit bytes 1 through 4 of the array are	
	ignored and Range 1 starts in Byte 5.	
	Note. On the TNA001 unit bytes 1 through 8 of the array	
	are ignored and Range 1 starts in Byte 9.	
	The diameters are entered in the range 0 to 65535	
	(0 to FFFF), which relates to 0% to 100% output voltage (i.e.	
	0 to 10 NT units).	

Example: Enter the NanoTrak cirle diameter LUT values.

TX 21, 06, 20, 00, D0, 01, 00, 00, 00, 00, 34, 33, A4, 30, 16, 2E, 86, 2B, F6, 28, 68, 26, D8, 23, 48, 21, B8, 1E, 2A, 1C, 9A, 19, 0A, 17, 7C, 14, EC, 11

Header: 21, 06, 20, 00, D0, 01: Set_NTCircHomePos, 32 byte data packet, Generic USB Device.

CircDias: The various range related LUT values entered in range order)

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5			
header only								
22 06 00 00 d s								

GET:

Command structure (38 bytes)

	1											
0	1	2	3	4	5	6	7	8	9	10	11	
		hea	nder						Data			
23	06	20	00	d	S	Not	Used	Not	Used	L	UTVal	
	-											
12	13	14	15	16	17	18	19	20	21	22	23	
						Data						
LUT	TVal	LUT	ΓVal	LUT	「Val	LUT	ΓVal	LU	TVal	L	UTVal	
24	25	26	27	28	29	30	31	32	33	34	35	

			Data			
LUTVal						

See SET for structure.

MGMSG_PZ_SET_NTPHASECOMPPARAMS MGMSG_PZ_REQ_NTPHASECOMPPARAMS MGMSG_PZ_GET_NTPHASECOMPPARAMS

0x0626	
0x0627	
NY0628	

Function:The feedback loop scenario in a typical NanoTrak application can
involve the operation of various electronic and electromechanical
components (e.g. power meters and piezo actuators) that could
introduce phase shifts around the loop and thereby affect tracking
efficiency and stability. These phase shifts can be cancelled by
setting the 'Phase Compensation' factors.
This message sets the phase compensation for the horizontal and
vertical components of the circle path in the range 0 to 360 degrees.
Typically both phase offsets will be set the same, although some
electromechanical systems may exhibit different phase lags in the

different components of travel and so require different values.

SET:

Command structure (10 bytes) 6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder			Data					
26	06	06	00	d	S	PhaseCompMode PhaseCompASW PhaseCom				mpBSW	

Data Structure:

field	description	format
PhaseCompMode	Currently, the phase compensation mode is not	word
	adjustable, and is locked at manual (software)	
	adjustment.	
PhaseCompASW	The horizontal axis phase compensation value, entered in	short
	real world units and calculated as follows:-	
	value = (phase angle [degrees] / 360) * CircOscFreq	
	See the <u>PZ_SET_NTCIRCPARAMS</u> message for details on	
	the CircOscFreq parameter	
	Note. Negative phase values must be made positive by	
	subtraction from 360 before the calculation is made.	
PhaseCompBSW	The vertical axis phase compensation value, entered in	short
	real world units and calculated as follows:-	
	value = (phase angle [degrees] / 360) * CircOscFreq	
	See the <u>PZ_SET_NTCIRCPARAMS</u> message for details on	
	the CircOscFreq parameter	
	Note. Negative phase values must be made positive by	
	subtraction from 360 before the calculation is made.	

Example: Set the NanoTrak circle home position to be screen centre.

TX 26, 06, 06, 00, D0, 01, 02, 00, 93, 00, 93, 00

Header: 26, 06, 06, 00, D0, 01: Set_NTPhaseCompParams, 06 byte data packet, Generic USB Device.

PhaseCompMode; 0x0002 Locked at Software Adjustment mode.

PhaseCompASW; 0x0093 147

Therefore, for circle scanning freq of 44, Phase Angle = $147/(7000/44) \times 360 = -30^{\circ}$

PhaseCompBSW 0x0093

REQUEST:

Command structure (6 bytes):									
0 1 2 3 4 5									
	header only								
27	27 06 00 00 d s								

GET:

0	1	2	3	4	5	6	7	8	9	10	11
	header							Da	ta		
28	06	06	00	d	S	PhaseCompMode PhaseCompASW PhaseCompB				mpBSW	

See SET for structure.

MGMSG_PZ_SET_NTTIARANGEPARAMS MGMSG_PZ_REQ_NTTIARANGEPARAMS MGMSG_PZ_GET_NTTIARANGEPARAMS

0x0630 0x0631 0x0632

Function:This message is used to select manual (software) or auto ranging,
and to modify the ranging characteristics in each case.

SET:

Command structure (18 bytes)

6 byte header followed by 12 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
		hea	ıder				Da	ta	
30 06 0C 00 d s						Range	Mode	RangeU	pLimit

10	11	12	13	14	15	16	17
RangeDownLimit		Settles	Samples	RangeCha	ngeType	Ran	geSW

Data Structure:

field	description	format
RangeMode	This parameter specifies the ranging mode of the unit as follows:0x01RANGE_AUTOchange to Auto ranging at therange currently selected	word
	0x02 RANGE_SW change to manual ranging at the range currently selected	
	0x03RANGE_SWSETchange to manual ranging at the range set in the SetRange method (or the 'Settings' panel)0x04RANGE_AUTOSET	
	0x04 RANGE_AUTOSET change to Auto ranging at the range set in the RangeSW parameter below.	
RangeUpLimit	Only applicable if Auto Ranging is selected in the RangeMode parameter above. This parameter sets the upper range limit as a percentage of the present range, 0 to 1000 = 0 to 100%. When autoranging, the NanoTrak unit adjusts continually the TIA range as appropriate for the input signal level. When the relative signal rises above the limit specified in this parameter, the unit increments the range to the next higher setting. The relative signal is displayed on the NanoTrak GUI panel by a green horizontal bar.	short
RangeDownLimit	Only applicable if Auto Ranging is selected in the RangeMode parameter above. This parameter sets the lower range limit as a percentage of the present range, 0 to 1000 = 0 to 100%. Similarly to RangeUpLimit, when the relative signal on a particular range drifts below the limit set in this parameter, the NanoTrak unit decrements the range to the next lower setting. The relative signal is displayed on the NanoTrak GUI panel by a green horizontal bar.	short
SettleSamples	Only applicable if Auto Ranging is selected in the RangeMode parameter above.	short

					1
	•	r determines the amour	-	• • •	
	-	ore autoranging takes pl	-	•	
	•	e the signal to noise rati			
	•	als. However, higher Set	•		
		ranging response. In a p	•	•	
	SettleSamples				
	autoranging re				
		in real world units, from	n '2' to '32',	with a default	
	setting value o				
RangeChangeType		e if Auto Ranging is sele	cted in the F	RangeMode	word
	parameter abo				
	•	r specifies how range ch	langes are ir	nplemented by	
	the system.				
				anges when	
		en two input signal leve			
				bered ranges	
		wo input signals levels v			
				nbered ranges	
		wo input signals levels v			
		vo modes are useful who			
		e anticipated, because t		of ranges	
Develop		d to give a more rapid r		1 : + h - c	
RangeSW		e if Manual (SW) Rangin	g is selected	i in the	word
		arameter above.	internal tra	una improdonce	
		unit is equipped with ar circuit (and associated a		•	
	• • •	ittons in the GUI). This a			
		signal is connected to the			
		nel. There are 14 range	-		
		the best range to measu	- .	-	
		the GUI panel relative in	•	-	
		and 2 (3 nA and 10 nA)			
	TNA001 T-Cub				
	This paramete	r returns the input signa	al range curr	ently selected,	
	defined as follo		Ū		
	Range	BNT, TNA, MNA	KNA	Returned	
	Range 1	3 nA	5 nA	0x03	
	Range 2	10 nA	16.6 nA	0x04	
	Range 3	30 nA	50 nA	0x05	
	Range 4	100 nA	166 nA	0x06	
	Range 5	300 nA	500 nA	0x07	
	Range 6	1 μA	1.65 μA	0x08	
	Range 7	3 µA	5.0 μA	0x09	
	Range 8	10 μΑ	16 μΑ	0x0A	
	Range 9	30 μA	50 μA	0x0B	
			•	0,000	
	Range 10	100 μA	166 µA	0x0C	
	Range 10 Range 11	100 μΑ 300 μΑ	166 μΑ 500 μΑ	0x0C 0x0D	
	-	•	•		
	Range 11	300 µA	500 µA	0x0D	

Example

TX 30, 06, 0C, 00, D0, 01, 01, 00, 52, 03, 96, 00, 04, 00, 01, 00, 05, 00

Header: 30, 06, 0C, 00, D0, 01: Set_NTTIARangeParams, 12 byte data packet, Generic USB Device.

0x0001	Auto Ranging mode
0x0352	850 == 85%
0x0096	150 == 15%
0x0004	4
0x0001	Auto range through all ranges
0x0005	P_PZ_NTTIA_RANGE30NANO
	0x0352 0x0096 0x0004 0x0001

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5			
header only								
31 06 01 00 d s								

GET:

Command structure (18 bytes) 6 byte header followed by 12 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
header							Da	ıta	
32	06	0C	00	d	S	RangeMode RangeUpLimit			
10	11	12	2	13	14	15	16	17	
RangeDownLimit SettleSamples		oles	RangeCha	angeType	R	angeSW			

See SET for structure

MGMSG_PZ_SET_NTGAINPARAMS MGMSG_PZ_REQ_NTGAINPARAMS MGMSG_PZ_GET_NTGAINPARAMS

0x0633	
0x0634	
0x0635	

Function: This message sets the gain level of the NanoTrak control loop, and is used to ensure that the DC level of the input (feedback loop) signal lies within the dynamic range of the input. Increasing this value can lead to a more responsive NanoTrak behaviour as the signal variation around the circular path is enhanced. However, for a particular set up, if this value is too high, then unstable NanoTrak operation (indicated by a fluctuating circle) can result.

SET:

Command structure (10 bytes) 6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
	header						Da	ta	
33 06 04 00 d s						GainC	trlMode	NTG	ainSW

Data Structure:

field	description	format
GainCtrlMode	This parameter is currently locked and cannot be changed:	word
	0x02 GAIN_SW software setting gain control mode	
NTGainSW	This parameter sets the loop gain, as a function of TIA range setting. The value is set between 100 and 10000 with a default value of 600. It is not normally necessary for anything other than minor adjustment from this default value.	short

Example: Set the NanoTrak loop gain to 600.

TX 33, 06, 04, 00, D0, 01, 02, 00, 58, 02

Header: 33, 06, 04, 00, D0, 01:Set_NTGainParams, 04 byte data packet, Generic USB Device.GainCtrlMode0x0002:Software SettingNTGainSW0x0258:600

REQUEST:

Com	Command structure (6 bytes):								
0	1	2	3	4	5				
		head	der only						

neuder only										
34	06	00	00	d	S					

GET:

Command structure (10 bytes):

0	1	2	3	6	7	8	9			
		hea	der			Data				
35	06	04	00	GainC	trlMode	NTG	ainSW			

See SET for structure.

0x0636

0x0637

0x0638

MGMSG_PZ_SET_NTTIALPFILTERPARAMS MGMSG_PZ_REQ_NTTIALPFILTERPARAMS MGMSG_PZ_GET_NTTIALPFILTERPARAMS

Note - Not applicable to KNA101 units

Function: This message specifies the cut off frequency of the digital low pass (LP) filter applied to output readings of the internal amplifier (TIA) circuitry. If the readings displayed or returned are unstable, this setting can be used to remove any unwanted high frequency components and improve input signal stability.

SET:

Command structure (26 bytes)

6 byte header followed by 20 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13
	header						Data						
36	36 06 14 00 d s						Param1 Para					am2	
14	15	16	17	18	19	20	21	22	23	24	25		
							Data						
	Param3 Para								Ра	ram5			

Data Structure:

field	description	format
FilterParams	This parameter contains low pass filter values which can be applied to the OUTPUT from the TIA, i.e. is applied to those reading params sent to the PC. It does NOT operate on the input to the TIA and does not operate on reading values used by the NanoTrak algorythms (these use a bandpass filter, effectively negating the need for a LP filter). The filter can be used to smooth out readings displayed in the GUI. It can also be used by client applications without affecting operation of the NanoTrak.	long
	Note. Although there are 5 parameters available, only the first parameter is used at this time. The filter can be set to OFF, or one of 5 frequency values as	
	follows: Note. Only the first parameter is used at this time.	
	 0 LP_NONE Low pass filter inactive 1 LP_1HZ Cut off all signals above 1Hz 2 LP_3HZ Cut off all signals above 3Hz 3 LP_10HZ Cut off all signals above 10Hz 4 LP_30HZ Cut off all signals above 30Hz 	
	5 LP_100HZ Cut off all signals above 100Hz	

Set the LP filter to 1 Hz. Example:

Header: 36, 06, 14, 00, D0, 01: Set_NTTIALPFilterParams, 20 byte data packet, Generic USB Device.

FilterParams: 05 LP_100HZ Cut off all signals above 100Hz

S

REQUEST:

Command structure (6 bytes):

 0
 1
 2
 3
 4
 5

 header only

d

00 00

GET:

37 06

Command structure (26 bytes)

0	1	2	3	4	5	6	7	8	9	10	11	12	13
	header						Data						
38	38 06 14 00 d s						Pa	ram1			Par	am2	

14	15	16	17	18	19	20	21	22	23	24	25
	Data										
Param3 Param4									Ра	ram5	

See SET for structure.

MGMSG_PZ_REQ_NTTIAREADING MGMSG_PZ_GET_NTTIAREADING

0x0639 0x063A

Function:

This message obtains the absolute signal value at the current position, in units as displayed on the GUI panel.

REQUEST:

Com	mand	structı	ure (6 b	oytes):	
0	1	2	3	4	5
		head	ler only		
39	06	00	00	d	S

GET:

Command structure (16 bytes) 6 byte header followed by 10 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder			Data					
3A	3A 06 0A 00 d s						AbsRe	eading		RelRe	eading

12	13	14 15			
	D	ata			
Ra	nge	UnderO	verRead		

Data Structure:

field		descrip	tion		format			
AbsReading	This parame	ter returns the absolute	TIA (PIN) curr	ent or BNC voltage	float			
		current position. The va		•				
	floating poir	ng point value in the range 1×10^{-9} to 1×10^{-3} (i.e. 1 nA to 1 mA						
	or 1 to 10 V	to 10 V). The input source, TIA or BNC is set in the						
	Set_NTFeed	Set_NTFeedbackSRC message.						
RelReading	The relative	ne relative signal strength at the current position, in the range 0 to						
	32767 (i.e. 0	'67 (i.e. 0 to 100% of the range currently selected). This value						
	matches the	ches the length of the input signal bargraph on the GUI panel.						
	(e.g. if the 3	μA range is currently se	lected, then a	RelReading value				
	of 16384 (50)%) equates to 1.5 μA).).						
Range	This parameter returns the input signal range currently selected.							
	There are 14	l range settings (1 - 14) t	hat can be us	ed to select the				
	-	o measure the input sigr		on the GUI panel				
	relative inpu	it signal bar and display)						
	-	1 and 2 (3 nA and 10 nA	() are not app	licable to TNA001				
	T-Cube units	5.						
		ter returns the input sig	nal range curr	ently selected,				
	defined as follows:							
	Range	BNT, TNA, MNA	KNA	Returned				
	Range 1	3 nA	5 nA	0x03				
	Range 2	10 nA	16.6 nA	0x04				
	Range 3	30 nA	50 nA	0x05				

	1				
	Range 4	100 nA	166 nA	0x06	
	Range 5	300 nA	500 nA	0x07	
	Range 6	1 μΑ	1.65 μA	0x08	
	Range 7	3 μΑ	5.0 μΑ	0x09	
	Range 8	10 µA	16 µA	0x0A	
	Range 9	30 µA	50 µA	0x0B	
	Range 10	100 µA	166 µA	0x0C	
	Range 11	300 µA	500 µA	0x0D	
	Range 12	1 mA	1.66 m	0x0E	
	Range 13	3 mA	5 mA	0x0F	
	Range 14	10 mA	N/A	0x10	
UnderOverRead	This parameter	r returns a value that ide	entifies whe	ther the unit is	word
	under reading	or over reading the inpu	it signal as fo	ollows:	
	0x01 power	signal is within current	TIA range		
	0x02 power	signal is under-reading	for current T	ΊΑ	
	0x03 power	signal is over-reading fo	or current TI	A range	
	e.g. if a user sp	ecified range of 3 μ A is	currently ap	plied, this	
	parameter retu	urns '0x03' (Over read)' f	for input sig	nals greater than 3	
	μΑ.				

Example: Get the NanoTrak reading.

RX 3A, 06, 0A, 00, D0, 01, 00, 00, 00, 00, 00, 00, 05, 00, 01, 00

Header: 3A, 06, 0A, 00, D0, 01: Get_NTTIAReading, 10 byte data packet, Generic USB Device. AbsReading 00, 00, 00, 00: i.e. 20 nA RelReading 00, 40: 16384, i.e. 50% Range 05,00 Range 3, i.e. 30 nA UnderOverRead 01,00 Within Range

Issue 40

MGMSG_PZ_SET_NTFEEDBACKSRC MGMSG_PZ_REQ_NTFEEDBACKSRC MGMSG_PZ_GET_NTFEEDBACKSRC

0x063B 0x063C 0x063D

Function:This message sets the input source of the NanoTrak.
The INPUT_BNC settings are used when NanoTraking to optimise a
voltage feedback signal. Typically, these inputs are selected when an
external power meter which generates a voltage output, is
connected to the rear panel SIG IN connector.

Note. In this case the internal amplifier circuit is bypassed and the 'Range' bar on the GUI panel is switched off (autoranging functionality is not required). Furthermore, although tracking occurs as normal, the tracking indicator on the GUI panel is inoperative.

The INPUT_TIA setting is used when NanoTraking to optimise a PIN current feedback signal. The TIA (trans impedence amplifier) input source should be selected when using the rear panel OPTICAL/PIN I/P connector with either an integral detector, or an external detector head connected to the optional SMB adapter. This option uses the internal amplifier circuit and associated functionality (e.g. autoranging).

SET: Command structure (6 bytes)

0	1	2	3	4	5						
	header										
3B 06 00 00 d s											

The input source is set in byte 2 as follows:

P_PZ_NTFBTIA	0x01	TIA input
P_PZ_NTFBBNC1V	0x02	EXT input (1V range) (N/A for KNA101)
P_PZ_NTFBBNC2V	0x03	EXT input (2V range) (N/A for KNA101)
P_PZ_NTFBBNC5V	0x04	EXT input (5V range)
P_PZ_NTFBBNC10V	0x05	EXT input (10V range) (N/A for KNA101)

Example: Set the input source to TIA input.

TX, 3B, 06, 01, 00, 50, 01,

REQ:

Command structure (6 bytes)

0	1	2	3	4	5		
header							
3C 06 00 00 d s							

GET:

Command structure (6 bytes)

0	1 2		3	4	5		
header							
3D 06 00 00 d s							

See SET command for structure

MGMSG_PZ_REQ_NTSTATUSBITS **MGMSG_**PZ_GET_NTSTATUSBITS

0x063E 0x063F

Function:Returns a number of status flags pertaining to the operation of the
NanoTrak controller channel specified in the Chan Ident parameter.
These flags are returned in a single 32 bit integer parameter and can
provide additional useful status information for client application
development. The individual bits (flags) of the 32 bit integer value
are described in the following tables.

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
3E	06	Chan	00	d	S		
		Ident					

GET:

Response structure (12 bytes) 6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header					Data					
3F	06	0A	00	d	s	StatusBits					

Data Structure:

field	description	format
StatusBits	The status bits for the associated controller channel. The meaning of the individual bits (flags) of the 32 bit integer value will depend on the controller and are described in the following tables.	dword

TNA001 controller

Hex Value	Bit Number	Description
0x0000001	1	Tracking (1 - tracking, 0 - latched).
0x0000002	2	Tracking with Signal (1 – with signal, 0 – no signal)
0x00000004	3	Tracking Channel A (1 – Chan A only, 0 – Both channels)
0x0000008	4	T racking Channel B (1 – Chan B only, 0 – Both channels)
0x0000010	5	Auto-ranging (1 – auto ranging, 0 manual ranging).
0x0000020	6	Under Read (1 – under reading, 0 – reading within range).
0x00000040	7	Over Read (1 – over reading, 0 – reading within range).
	8 to 16	For future use
0x00010000	17	Channel A Connected (1 – Connected, 0 – Not Connected)
0x00020000	18	Channel B Connected (1 – Connected, 0 – Not Connected)
0x00040000	19	Channel A Enabled (1 – Enabled, 0 – Disabled)
0x00080000	20	Channel B Enabled (1 – Enabled, 0 – Disabled)
0x00100000	21	Channel A Control Mode (1 – Closed Loop, 0 – Open Loop)
0x00200000	22	Channel B Control Mode (1 – Closed Loop, 0 – Open Loop)
	23 to 32	For future use

Hex Value	Bit Number	Description				
0x0000001	1	Tracking (1 - tracking, 0 - latched).				
0x0000002	2	Tracking with Signal (1 – with signal, 0 – no signal)				
0x0000004	3	Tracking Channel A (1 – Chan A only, 0 – Both channels)				
0x0000008	4	T racking Channel B (1 – Chan B only, 0 – Both channels)				
0x0000010	5	Auto-ranging (1 – auto ranging, 0 manual ranging).				
0x0000020	6	Under Read (1 – under reading, 0 – reading within range).				
0x00000040	7	Over Read (1 – over reading, 0 – reading within range).				
	8 to 16	For future use				
0x00010000	17	Channel A Connected (1 – Connected, 0 – Not Connected)				
0x00020000						
0x00040000	19	Channel A Enabled (1 – Enabled, 0 – Disabled)				
0x00080000	20	Channel B Enabled (1 – Enabled, 0 – Disabled)				
0x00100000	21	Channel A Control Mode (1 – Closed Loop, 0 – Open Loop)				
0x00200000	22	Channel B Control Mode (1 – Closed Loop, 0 – Open Loop)				
Note. Bits 23 to	32 (Digital Input	States) are only applicable if the associated digital input is fitted to				
your controller -	 see the relevant 	handbook for more details				
0x00100000	21	Digital input 1 state (1 - logic high, 0 - logic low).				
0x00200000	22	Digital input 2 state (1 - logic high, 0 - logic low).				
0x00400000	23	Digital input 3 state (1 - logic high, 0 - logic low).				
0x00800000	24	Digital input 4 state (1 - logic high, 0 - logic low).				
0x01000000	25	Digital input 5 state (1 - logic high, 0 - logic low).				
0x02000000	26	Digital input 6 state (1 - logic high, 0 - logic low).				
0x04000000	27	Digital input 7 state (1 - logic high, 0 - logic low).				
0x0800000	28	Digital input 8 state (1 - logic high, 0 - logic low).				
	29	For Future Use				
0x20000000	30	Active (1 – indicates unit is active, 0 – not active)				
0x4000000	31	For Future Use				
0x80000000	32	Channel enabled (1 – enabled, 0- disabled)				

BNT series controllers

MGMSG_PZ_REQ_NTSTATUSUPDATE MGMSG_PZ_GET_NTSTATUSUPDATE

0x0664 0x0665

Function:This function is used in applications where spontaneous status
messages (i.e. messages sent using the START_STATUSUPDATES
command) must be avoided.
Status update messages contain information about the position and
status of the controller (for example position and O/P voltage). The
response will be sent by the controller each time the function is
requested.

REQUEST: Command structure (6 bytes):

0	1	2	3	4	5			
	header only							
64	06	Chan Ident	00	d	S			

GET:

Status update messages are received with the following format:-

Response structure (32 bytes)

6 byte header followed by 26 byte data packet as follows:

		-									
0	1	2	3	4	5	6	7	8	9	10	11
	header					Data					
65	06	1A	00	d	S	Circl	PosA	CircPosB		Circ	:Dia
12	13	14	15	16	17	18	19	20	21	22	23
					Do	nta					
	AbsRe	eading		RelRe	ading	Range		UnderC	VerRead	Stat	usBits
24	25	26	27	28	29	30	31				
Data											
Statu	usBits	NTO	Gain	Phase	PhaseCompA PhaseCompB						

Data Structure:

field	description	format
CircPosA	The horizontal co-ordinate of the circle home position, in the	word
	range 0 to 65535 (0 to 100% of output voltage or 0 to 10	
	NanoTrak units).	
CircPosB	The vertical co-ordinate of the circle home position, in the range 0	word
	to 65535 (0 to 100% of output voltage or 0 to 10 NanoTrak units).	
CircDia	This NanoTrak scanning circle diameter. The diameter is returned	word
	in the range 0 to 65535, which relates to 0% to 100% output	
	voltage –(i.e. 0 to 10 NT units).	
AbsReading	The absolute TIA (PIN) current or BNC voltage value at the current	float
	position. The value is returned as a 4 byte floating point value in	
	the range 1 x 10^{-9} to 1 x 10^{-3} (i.e. 1 nA to 1 mA or 1 to 10 V). The	
	input source, TIA or BNC is set in the <u>Set_NTFeedbackSRC</u>	
	message.	

RelReading	The relative c	ignal strongth at the su	rrant position	in the range O	word	
Reineauling	The relative signal strength at the current position, in the range 0 to 32767 (i.e. 0 to 100% of the range currently selected). This					
	-	-	•	-		
	value matches the length of the input signal bargraph on the GUI panel. (e.g. if the 3 μ A range is currently selected, then a					
			•			
Pango	-	alue of 16384 (50%) equipped with			word	
Range		cunit is equipped with		•	woru	
) circuit (and associated uttons in the GUI). This		• •		
		t signal is connected to	• •			
	•	•	• •			
		I. There are 14 range set the best range to mea	• •			
		-		-		
		the GUI panel relative				
	TNA001 T-Cul	1 and 2 (3 nA and 10 nA	are not app			
				onthy coloctod		
	defined as fol	er returns the input sig	lai lange cull	entry selected,		
	uenneu as ior	10.005.				
	Range	BNT, TNA, MNA	KNA	Returned		
	Range 1	3 nA	5 nA	0x03		
	Range 2	10 nA	16.6 nA	0x04		
	Range 3	30 nA	50 nA	0x05		
	Range 4	100 nA	166 nA	0x06		
	Range 5	300 nA	500 nA	0x07		
	Range 6	1 μA	1.65 μA	0x08		
	Range 7	3 μΑ	5.0 µÅ	0x09		
	Range 8	10 µA	16 µA	0x0A		
	Range 9	30 µA	50 µA	0x0B		
	Range 10	100 µA	166 µA	0x0C		
	Range 11	300 µA	500 µA	0x0D		
	Range 12	1 mA	1.66 m	0x0E		
	Range 13	3 mA	5 mA	0x0F		
	Range 14	10 mA	N/A	0x10		
UnderOverRead	This paramete	er returns a value that i	dentifies whe	ther the unit is	word	
	under reading	g or over reading the in	put signal as f	ollows:		
	0x01 powe	r signal is within currer	nt TIA range			
	0x02 powe	r signal is under-readin	g for current	TIA		
	0x03 powe	r signal is over-reading	for current TI	A range		
	e.g. if a user s	pecified range of 3 μ A	is currently ap	plied, this		
	parameter re	turns '0x03' (Over read)' for input sig	nals greater		
	than 3 μA.					
StatusBits	The meaning	of the individual bits (f	ags) of the 32	bit integer	dword	
	value will dep	end on the controller a	ind are descri	bed in the		
	following tabl	es.				
NTGain	This parameter	er returns the loop gair	i, as a function	n of TIA range	short	
	setting. The v	alue is returned betwe	en 100 and 10	000 (default		
	value of 600).					
PhaseCompA	The horizonta	Il axis phase compensa	tion value, ret	urned in real	short	
	world units as	s follows:-				
	value = (phase	e angle [degrees] / 360) * CircOscFre	q		
	See the <u>PZ_SE</u>	T_NTCIRCPARAMS me	ssage for deta	ils on the		
	CircOscFreq p	arameter				

	Note . Negative phase values must be made positive by subtraction from 360 before the calculation is made.	
PhaseCompB	The vertical axis phase compensation value, returned in real world units as follows:- value = (phase angle [degrees] / 360) * CircOscFreq See the <u>PZ_SET_NTCIRCPARAMS</u> message for details on the CircOscFreq parameter Note . Negative phase values must be made positive by subtraction from 360 before the calculation is made.	short

TNA001 controller

Hex Value	Bit Number	Description
0x0000001	1	Tracking (1 - tracking, 0 - latched).
0x0000002	2	Tracking with Signal (1 – with signal, 0 – no signal)
0x00000004	3	Tracking Channel A (1 – Chan A only, 0 – Both channels)
0x0000008	4	T racking Channel B (1 – Chan B only, 0 – Both channels)
0x0000010	5	Auto-ranging (1 – auto ranging, 0 manual ranging).
0x0000020	6	Under Read (1 – under reading, 0 – reading within range).
0x0000040	7	Over Read (1 – over reading, 0 – reading within range).
	8 to 16	For future use
0x00010000	17	Channel A Connected (1 – Connected, 0 – Not Connected)
0x00020000	18	Channel B Connected (1 – Connected, 0 – Not Connected)
0x00040000	19	Channel A Enabled (1 – Enabled, 0 – Disabled)
0x00080000	20	Channel B Enabled (1 – Enabled, 0 – Disabled)
0x00100000	21	Channel A Control Mode (1 – Closed Loop, 0 – Open Loop)
0x00200000	22	Channel B Control Mode (1 – Closed Loop, 0 – Open Loop)
	23 to 32	For future use

BPC series controllers

Hex Value	Bit Number	Description
0x0000001	1	Piezo actuator connected (1 - connected, 0 - not connected).
	2 to 4	For Future Use
0x0000010	5	Piezo channel has been zero'd (1 - zero'd, 0 not zero'd).
0x0000020	6	Piezo channel is zeroing (1 - zeroing, 0 - not zeroing).
0x0000040	7 to 8	For Future Use
0x00000100	9	Strain gauge feedback connected (1 - connected, 0 - not
		connected).
	10	For Future Use
0x00000400	11	Position control mode (1 - closed loop, 0 - open loop).
	12 to 20	For Future Use
Note. Bits 21 to 28	8 (Digital Input S	tates) are only applicable if the associated digital input is fitted to
your controller – s	see the relevant	handbook for more details
0x00100000	21	Digital input 1 state (1 - logic high, 0 - logic low).
0x00200000	22	Digital input 2 state (1 - logic high, 0 - logic low).
0x00400000	23	Digital input 3 state (1 - logic high, 0 - logic low).
0x0080000	24	Digital input 4 state (1 - logic high, 0 - logic low).
0x01000000	25	Digital input 5 state (1 - logic high, 0 - logic low).
0x02000000	26	Digital input 6 state (1 - logic high, 0 - logic low).
0x04000000	27	Digital input 7 state (1 - logic high, 0 - logic low).

0x0800000	28	Digital input 8 state (1 - logic high, 0 - logic low).
	29	For Future Use
0x20000000	30	Active (1 – indicates unit is active, 0 – not active)
0x4000000	31	For Future Use
0x80000000	32	Channel enabled (1 – enabled, 0- disabled)

MGMSG_PZ_ACK_NTSTATUSUPDATE

0x0666

Only Applicable If Using USB COMMS. Does not apply to RS-232 COMMS

Function:If using the USB port, this message called "server alive" must be sent
by the server to the controller at least once a second or the
controller will stop responding after ~50 commands.
The controller keeps track of the number of "status update" type of
messages (e.g.move complete message) and it if has sent 50 of
these without the server sending a "server alive" message, it will
stop sending any more "status update" messages.
This function is used by the controller to check that the PC/Server
has not crashed or switched off. There is no response.

Structure (6 bytes):

0	1	4	5									
header only												
66	66 06 00 00 d s											

TX 66, 06, 00, 00, 50, 01

MGMSG_KNA_SET_NTTIALPFILTERCOEFFS MGMSG_KNA_REQ_NTTIALPFILTERCOEFFS MGMSG_KNA_GET_NTTIALPFILTERCOEFFS

Function:This message specifies the cut off frequency of the digital low pass
(LP) filter applied to output readings of the internal amplifier (TIA)
circuitry. If the readings displayed or returned are unstable, this
setting can be used to remove any unwanted high frequency
components and improve input signal stability.

SET:

Command structure (26 bytes)

6 byte header followed by 20 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13
		hea	der			Data							
87	06	14	00	d	S	Param1					Par	am2	

14	15	16	17	18	19	20	21	22	23	24	25		
	Data												
	Param3 Param4								Ра	ram5			

Data Structure:

field	description	format
FilterParams	This parameter contains low pass filter values which can be applied to the OUTPUT from the TIA, i.e. is applied to those reading params sent to the PC. It does NOT operate on the input to the TIA and does not operate on reading values used by the NanoTrak algorithms (these use a bandpass filter, effectively negating the need for a LP filter). The filter can be used to smooth out readings displayed in the GUI. It can also be used by client applications without affecting operation of the NanoTrak.	long
	Note. Although there are 5 parameters available, only the first parameter is used at this time. The filter can be set to OFF, or one of 5 frequency values as follows:	
	 Note. Only the first parameter is used at this time. 0 LP_NONE Low pass filter inactive 1 LP_1HZ Cut off all signals above 1Hz 2 LP_3HZ Cut off all signals above 3Hz 3 LP_10HZ Cut off all signals above 10Hz 4 LP_30HZ Cut off all signals above 30Hz 5 LP_100HZ Cut off all signals above 100Hz 	

Example: Set the LP filter to 1 Hz.

0x0687

0x0688

0x0689

Header: 87, 06, 14, 00, D0, 01: Set_NTTIALPFilterParams, 20 byte data packet, Generic USB Device.

FilterParams: 05 LP_100HZ Cut off all signals above 100Hz

REQUEST:

Command structure (6 bytes):

0	0 1 2 3 4											
	header only											
88												

GET:

Command structure (26 bytes)

0	1	2	3	4	5	6	7	8	9	10	11	12	13
		hea	ıder				Data						
89	06	14	00	d	S		Pa	ram1			Par	am2	

ſ	14	15	16	17	18	19	20	21	22	23	24	25	
Ī	Data												
	Param3 Param4									Ра	ram5		

See SET for structure.

MGMSG_KNA_SET_KCUBEMMIPARAMS MGMSG_KNA_REQ_KCUBEMMIPARAMS MGMSG_KNA_GET_KCUBEMMIPARAMS

0x068A 0x068B 0x068C

Function:Used to set the intensity of the LCD display on the TOP of the
KNA101 unit. Intensity is set as a percentage of full brightness in the
range 0 (off) to 100%. Also used to set the display time out and dim
level as described below.

SET:

Command structure (22 bytes)

6 byte header followed by 16 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13
	header							header Data					
8A	06	10	00	d	S	Whee	lStep	DispBrig	htness	Rese	rved	Rese	rved

14	15	16	17	18	19	20	21		
			Da	ta					
Reser	Reserved Reserved Reserved Reserved								

Data Structure:

field	description	format
WheelStep	Sets the adjustment rate of the top panel wheel as follows:	word
	0 – Low	
	1 – Mid	
	2 - High	
DispBrightness	In certain applications, it may be necessary to adjust the brightness of the LCD display on the top of the unit. The brightness is set as a value from 0 (Off) to 100 (brightest). The display can be turned off completely by entering a setting of zero, however, pressing the MENU button on the top panel will temporarily illuminate the display at its lowest brightness setting to allow adjustments. When the display returns to its default position display mode, it will turn off again.	word

Example: Set the Wheel Adjustment rate to High, and the Display intensity 50%.

TX 8A, 06, 10, 00, D0, 01, 02, 00, 32, 00,

Header: F6, 07, 04, 00, D0, 01: Set_KCUBEMMIPARAMS, 16 byte data packet, Generic USB Device.

WheelStep: 02, 00: Sets the wheel adjustment rate to High *DispIntensity: 32, 00*: Sets the display brightness to 50%

REQ:

Command structure (6 bytes):

0	1	2	3	4	5				
	header only								
8B	06	01	00	d	S				

Example:

Request the display intensity

TX 8B, 06, 01, 00, 50, 01

GET:

Command structure (22 bytes)

6 byte header followed by 16 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13
		hea	ıder			Data							
8C	06	10	00	d	S	WheelStep DispBrightness Reserved				erved	Rese	erved	

14	15	16	17	18	19	20	21		
			Da	ta					
Reser	Reserved Reserved Reserved Reserved								

See SET for data structure.

MGMSG_KNA_SET_KCUBETRIGIOCONFIG MGMSG_KNA_REQ_KCUBETRIGIOCONFIG MGMSG_KNA_GET_KCUBETRIGIOCONFIG

0x068D 0x068E 0x068F

Function: The KNA101 K-Cube NanoTrak has two bidirectional ports (IO1 and IO2). Both ports can be configured as a trigger input to respond to an external signal, or as a trigger output to control an external circuit. Additionally, IO1 can be used as an external input while IO2 is used as an external output.

When the port is used as a trigger output it provides a push-pull drive of 5 Volts, with the maximum current limited to approximately 8 mA. The current limit prevents damage when the output is accidentally shorted to ground or driven to the opposite logic state by external circuity. The active logic state can be selected High or Low to suit the requirements of the application.

This message sets the operating parameters of the IO1 and IO2 connectors on the front panel of the unit.

Warning. Do not drive the TRIG ports from any voltage source that can produce an output in excess of the normal 0 to 5 Volt logic level range. In any case the voltage at the TRIG ports must be limited to -0.25 to +5.25 Volts.

Trigger Modes

Input Trigger Modes

When configured as an input, the TRIG ports can be used as a general purpose digital input, or for starting a track or home event as follows:

0x00 The trigger IO is disabled.

0x01 General purpose logic input (read through status bits using the PZ GET NTSTATUSUPDATE message).

0x02 Input trigger for Tracking. On receipt of the trigger, the unit starts to track the max coupled power signal.

0x03 Input trigger for Home. On receipt of the trigger, the unit drives the circle to the home position, as set using the <u>Set NTCircHomePos</u> message.

When used for triggering, the port is edge sensitive. In other words, it has to see a transition from the inactive to the active logic state (Low->High or High->Low) for the trigger input to be recognized. For the same reason a sustained logic level will not trigger repeated events. The trigger input has to return to its inactive state first in order to start the next trigger.

Output Trigger Modes

When configured as an output, the TRIG ports can be used as a general purpose digital output, or for triggering an external circuit when tracking is active.

0x0A General purpose logic output (set using the MOD_SET_DIGOUTPUTS message). 0x0B Tracking Active. When tracking is active, the unit outputs a 5V signal for use in external circuits, e.g. a warning light.

Trigger Polarity

The polarity of the trigger pulse is specified in the TPolarity parameters as follows: 0x01 The active state of the trigger port is logic HIGH 5V (trigger input and output on a rising edge).

0x02 The active state of the trigger port is logic LOW 0V (trigger input and output on a falling edge).

SET:

Command structure (26 bytes)

6 byte header followed by 20 byte data packet as follows:

												-	
0	1	2	3	4	5	6	7	8	9	10	11		
		hea	nder					D	ata				
8D	06	14	00	d	S	T1N	lode	T1Pc	olarity	T	1Par		
12	13	14	15	16	17	18	19	20	21	22	23	24	25
							Data						
T2N	1ode	T2Po	larity	T2	Par	Rese	erved	Res	erved	Res	served	Rese	erved

Data Structure:

field	description	format
T1Mode	TRIG1 operating mode:	word
T1Polarity	The active state of TRIG1 (i.e. logic high or logic low) .	word
T1Par	Not Used	word
T2Mode	TRIG2 operating mode:	word
T2Polarity	The active state of TRIG2 (i.e. logic high or logic low) .	word
T2Par	Not Used	word

Example: Set the Trigger parameters for KNA101 as follows: T1Mode – TrigIn – Start Tracking T1Polarity – High T2Mode – Disabled T2Polarity – N/A

Header: 8D, 06, 14, 00, D0, 01: Set_KCube_TrigIOConfig, 20 byte data packet, d=D0 (i.e. 50ORed with 80 i.e. generic USB device), s=01 (PC).T1Mode – 02, 00TrigIn_Start TrackingT1Polarity – 01,00HighT2Mode – 00,00Disabled

REQ:

T2Polarity – 00,00

Command structure (6 bytes):

0	1	2	3	4	5			
header only								
8E 06 01 00 d s								

N/A

GET:

Command structure (26 bytes) 6 byte header followed by 20 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11		
		hea	der					D	ata				
8D	06	14	00	d	S	T1M	lode	T1Pc	olarity	T	LPar		
12	13	14	15	16	17	18	19	20	21	22	23	24	25
						l	Data						
T2N	1ode	T2Po	larity	T2	Par	Reserved Reserved Reserved R					Rese	erved	

See SET message for structure.

MGMSG_KNA_REQ_XYSCAN MGMSG_KNA_GET_XYSCAN MGMSG_KNA_STOP_XYSCAN

0x06A0 0x06A1 0x06A2

Note. These messages are applicable only to KNA101 units, and can be used only when operating in Piezo Mode – see MGMSG PZ SET NTMODE.

Function: In some applications, it may be useful to know roughly where the high power region is located within the range of the piezo device (e.g. to avoid power optimization on a side peak). When this message is called, the K-Cube unit moves the stage in an XY raster scan pattern over the full piezo range, and measures the optical power in a grid 96 x 96 points. The power data is then returned as a measure of intensity at each point, in the range 0 to 255. During the scan, auto-ranging is disabled and the range is locked at the range setting in use when the scan was requested. The data is also shown on the LCD display or GUI panel as a power intensity map, 96 x 96 pixels.

REQ: Command structure (6 bytes):

0	1	2	3	4	5				
	header only								
A0 06 01 00 d s									

Example:

Request the XY Scan

TX 90, 06, 01, 00, 50, 01

GET:

Command structure (106 bytes)

6 byte header followed by 100 byte data packet as follows:

0	1	2	3	4	5	6	7					104	105
		hea	ıder			Data							
A1	06	64	00	d	S	Line Number Range 96 byte intensity map					ар		

Data Structure

field	description	format	
Line Number	When the message is called it runs 96 times, once for each line	word	
	on the Y axis. Each run captures 96 data points on the X axis.		
	This parameter specifies the Y axis line in the raster scan, in the		
	range 0 to 95.		
Range	The NanoTrak unit is equipped with an internal trans-impedance	word	
	amplifier (TIA) circuit (and associated range/power level displays		
	and control buttons in the GUI). This amplifier operates when an		
	external input signal is connected to the Optical/PIN connector		
	used to select (displayed on the sca	the best ran the GUI pan n, auto-rang neter return	A unit has 13 range settings that can be age to measure the input signal el relative input signal bar and display). ging is disabled and the range is locked s the range setting in use when the
---------------	---	---	--
	Range	Limit	Returned
	Range 1	5 nA	0x03
	Range 2	16.6 nA	0x04
	Range 3	50 nA	0x05
	Range 4	166 nA	0x06
	Range 5	500 nA	0x07
	Range 6	1.65 μA	0x08
	Range 7	5.0 μΑ	0x09
	Range 8	16 µA	0x0A
	Range 9	50 µA	0x0B
	Range 10	166 µA	0x0C
	Range 11	500 µA	0x0D
	Range 12	1.66 mA	OxOE
	Range 13	5 mA	0x0F
Intensity Map	96 bytes. Each	byte repres	ents the intensity at a given point on
	the X-axis, in t	he range 0 t	o 255.

MGMSG_NT_SET_EEPROMPARAMS

Function:Used to save the parameter settings for the specified message.
These settings may have been altered either through the various
method calls or through user interaction with the GUI (specifically,
by clicking on the 'Settings' button found in the lower right hand
corner of the user interface).

SET:

Command structure (10 bytes) 6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6 7 8 9			
		hea	Data						
E7	07	04	00	d	S	Chan Ident MsgID			gID

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
MsgID	The message ID of the message containing the parameters to be saved.	word

Example:

TX E7, 07, 04, 00, D0, 01, 01, 00, 18, 06,

Header: E7, 07, 04, 00, D0, 01: Set_EEPROMPARAMS, 04 byte data packet, Generic USB Device.

Chan Ident: 01, 00: Channel 1

MsgID: Save parameters specified by message 0618 (SetNTCircParams).

Page 290 of 446

0x07E7

MGMSG_NT_SET_TNA_DISPSETTINGS MGMSG_NT_REQ_TNA_DISPSETTINGS MGMSG_NT_GET_TNA_DISPSETTINGS

0x07E8 0x07E9 0x07EA

Function: Used to set the intensity of the LED display on the front of the TNA and KNA units.

SET:

Command structure (8 bytes) 6 byte header followed by 2 byte data packet as follows:

0	1	2	3	4	5	6	7	
	Da	ita						
E8	07	02	00	d	S	DispIntensity		

Data Structure:

field	description	format
DispIntensity	The intensity is set as a value from 0 (Off) to 255 (brightest).	word

Example: Set the input source to software and potentiometer.

TX E8, 07, 02, 00, D0, 01, 64, 00,

Header: E8, 07, 02, 00, D0, 01: Set_DISPSETTINGS, 02 byte data packet, Generic USB Device. *DispIntensity: 64, 00*: Sets the display brightness to 100 (40%)

REQ:

Command structure (6 bytes):

0	1	2	3	4	5				
header only									
E9	07	01	00	d	S				

Example:

Request the display intensity

TX E9, 07, 01, 00, 50, 01

GET:

Command structure (8 bytes)

6 byte header followed by 2 byte data packet as follows:

0	1	2	3	4	5	6	7		
		Do	nta						
EA	07	02	00	d	S	DispIntensity			

See SET for data structure.

MGMSG_NT_SET_TNAIOSETTINGS MGMSG_NT_REQ_TNAIOSETTINGS MGMSG_NT_GET_TNAIOSETTINGS

0x07EB 0x07EC 0x07ED

Note. Applicable only to TNA T-Cube and KNA K-Cube Units.

Function:This message is used to set parameters which control the NanoTrak
output signal ranges and the way in which these signals are routed
to the associated external drivers.

SET:

Command structure (14 bytes)

6 byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13
		hea	der			Data							
EB	07	04	00	d	S	LVOutRange		LVOut	Route	HVOut	Range	SignIO	Route

Data Structure:

field	description	format					
LVOutRange	 TNA001 Units: The output signals from the NanoTrak T-Cube are routed to the piezo drivers to position the piezo actuators. Earlier piezo T-cubes accept a 5V input while later cubes accept a 10V input. Other piezo amplifiers with 5V or 10V input ranges may be driven from the NanoTrak T-Cube. This parameter sets the LV output range as follows:	word					
	and cannot be adjusted.						
LVOutRoute	 TNA001 Units: This parameter sets the way the signals are routed to the piezo T-Cubes as follows: 0x01 Rear panel SMA connectors only 0x02 Rear panel SMA connectors and Hub routing KNA101 Units: This parameter is fixed to route signals via the front and rear panel external SMA connectors and cannot be adjusted. Signals cannot be routed to external piezo drivers via the hub. 	word					
HVOutRange	KNA101 Units only: The piezo actuator connected to the unit has a specific maximum operating voltage range. This parameter sets the maximum piezo drive voltage from the HV Out connectors. The LSB relates to Chan 1 and the next bit relates to Chan 2 as follows: Chan 1: 0 = 75V and 1 = 150V, Chan 2: 0 = 75V and 10 = 150V Example: To set both channels to 150V output – 0000 1001	word					

SignIORoute	KNA101 Units only: The IO1 connector on the front panel can be	word
	configured as an external input and IO2 as an external output.	
	This parameter specifies the function of these connectors.	
	The LSB relates to Chan 1 and the next bit relates to Chan 2 as follows:	
	101	
	0 – IO 1 is disabled and the power signal is input via the PIN OPTICAL	
	INPUT connector on the rear panel	
l	1 - IO 1 is enabled, and the power signal is input via this SMA connector.	
	102	
	0 – IO 2 is disabled	
	10 – IO 2 is enabled and the power signal is output as a 0 to 10V signal	
	via this SMA connector	
	Example. Set IO 1 to disabled and IO2 to enabled – 00,00 10,00	
	AC BOOST	
	At low signal levels, when scanning for optical power a small change in	
	circle position can result in a large change in power reading. As the	
	search gets closer to the max power position, changes in circle position	
	result in only small changes in power reading. The AC BOOST function	
	amplifies the difference in power reading to better emphasise the	
	direction of max power. This function is activated by setting the 3 rd bit of	
	the parameter to 100	
	Example. Set IO 1 to disabled and IO2 to enabled and AC Boost active –	
	01,00 10,00	

Example

Tx EB,07,08,00,D0,01, 02,00,01,00,01,10,00,10

Header: EB, 07, 08, 00, D0, 01: Set_TNAIOSettings, 08 byte data packet, Generic USB Device.
LVOutRange: 02, 00: 0 to 5V range
LVOutRoute: 01, 00: Signal routing via rear panel SMA connectors.
HVOutRange: 01, 10: Ch1 and CH2 to 150V
SignIORoute: 00, 10: IO1 disabled, IO 2 enabled.

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5					
header only										
EC	07	Chan Ident	00	d	S					

GET:

Command structure (14 bytes) 6 byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13
		hea	ıder			Data							
ED	07	04	00	d	S	LVOutRange		LVOut	Route	HVOut	Range	SignIO	Route

See SET for structure.

Laser Control Messages

Introduction

The 'Laser' ActiveX Control provides the functionality required for a client application to control one or more Laser devices.

The methods of the Laser Control Object can then be used to control the T-Cube Laser Source (TLS001) and Laser Driver (TLD001) units, and the K-Cube Laser source (KLS101). Activities such as switching between display modes, setting the laser power set point, reading the laser power or current and setting the LED display intensity can be performed. For details on the use of the Laser Source, refer to the handbook supplied with the unit.

Issue 40

MGMSG_LA_SET_PARAMS MGMSG_LA_REQ_PARAMS MGMSG_LA_GET_PARAMS

0x0800 0x0801 0x0802

Function: This generic parameter set/request message is used to control all the functionality of the TLD001, KLD101, TLS001, KLS635 and KLS1550. The specific parameters to control are identified by the use of submessages. These sub messages comply with the general format of the Thorlabs message protocol but rather than having a unique first and second byte in the header carrying the "message identifier" information, the first and second byte remain the same. Instead, for the SET and GET messages, the message identifier is carried in the first two bytes in the data packet part of the message, whilst for the REQ message it is encoded as the third byte of the header. Likewise, when the unit responds, the first two bytes of the response remain the same and the first two bytes of the data packet identify the sub-message to which the information returned in the remaining part of the data packet relates. The following sub messages are applicable to all units: Set/Request/Get Laser Power Setpoint (sub-message ID = 1) Request/Get Laser Current and Power (sub-message ID = 3) Set/Request/Get Laser Power Control Source (sub-message ID = 5) Request/Get Status Bits (sub-message ID = 7) Request/Get Maximum TLS001 Limits (sub-message ID = 9) Request/Get Maximum TLD001 Laser Current (sub-message ID = 0A) Set/Request/Get Display Settings (sub-message ID = 0B) Set/Request/Get Misc TLD001 Settings (sub-message ID = 0D) <u>Set/Request/Get MMI Parameters (sub-message ID = 0E)</u> Set/Request/Get KLDDigOutputs (sub-message ID = 11)

> to explain the principle, the following examples describe the first of these messages in more detail.

Example - Set/Request/Get Laser Power Setpoint (sub-message ID = 1) This sub-message is not applicable to TLD001 Laser Driver units.

This sub-command is used to set / read the laser power setpoint. The setpoint is the required laser power that the TLS001 and KLS units will attempt to maintain. This is not necessarily the same as the actual laser power because if the current limit for the laser diode is exceeded, the setpoint will not be reached.

SET:

Command structure (10 bytes) 6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9		
	header							Data			
00	08	04	00	d	S	MsgID SetPoir		oint			

Data Structure:

field	description	format
MsgID	The message ID of the message containing the parameters	word
SetPoint	The Laser power setpoint (0 to 32767 -> 0% to 100% power).to be saved.	word

Example: Set the laser power setpoint to be set to 5% of the maximum power

TX 00, 08, 04, 00, D0, 01, 01, 00, 66, 06,

Header: 00, 08, 04, 00, D0, 01: Set_PARAMS, 04 byte data packet, Generic USB Device. *MsgID: 01, 00*: Set Laser Power Setpoint

SetPoint:.66, 06: the laser power setpoint, 0x0666 (1638 decimal), which is 5 % of the full power.

REQUEST:

Command structure (6 bytes):

0	1	2	2 3 4 5					
header only								
01 08 01 00 d s								

TX 01, 08, 01, 00, 50, 01,

GET:

Command structure (10 bytes) 6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
		hea		Da	ıta				
02	08	04	00	d	S	MsgID SetPoir		oint	

See SET message for data structure

Example - Request/Get Laser Current and Power (sub-message ID = 3) This sub-message is not applicable to TLD001 Laser Driver units.

This sub-command is used to read the actual laser power and the laser current. Note that there is no SET message as only the setpoint power can be set, not the actual power or current.

REQUEST:

Command structure (6 bytes):

0	0 1 2 3 4								
	header only								
01	08	03	00	d	S				

TX 01, 08, 03, 00, 50, 01,

GET:

Command structure (12 bytes) 6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header						Data				
02	08	06	00	d	S	MsgID LaserCurrent La		Laser	Power		

Data Structure:

field	description	format
MsgID	The message ID of the message containing the parameters	word
LaserCurrent	The Laser current (0 to 32767 -> 0 to max current in mA)	word
LaserPower	The Laser power (0 to 32767 -> 0% to 100% power)	word

Example: Get the laser current and power

RX 02, 08, 06, 00, D0, 01, 03, 00, 66, 06, 66, 06

Header: 00, 08, 06, 00, D0, 01: Set_PARAMS, 06 byte data packet, Generic USB Device. *MsqID: 03, 00*: Get Laser Current and Power

LaserCurrent:.66, 06: the laser current, 0x0666 (1638 decimal), which is 5 mA for a 100 mA max current laser.

LaserPower: .66, 06: the laser power, 0x0666 (1638 decimal), which is 5% of the full power.

Example - Request/Get Laser Current and Power (sub-message ID = 4)

This sub-message is applicable only to TLD001 Laser Driver units.

This sub-command is used to read the actual laser power and the laser current. Note that there is no SET message as only the setpoint power can be set, not the actual power or current.

REQUEST:

Command structure (6 bytes):

0	0 1 2 3 4 5								
	header only								
01	08	04	00	d	S				

TX 01, 08, 04, 00, 50, 01,

GET:

Command structure (14 bytes) 6 byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13
		hea	ıder					Data					
02	08	06	00	d	S	MsgID		LaserCurrent		LaserPower		LaserVoltage	

Data Structure:

field	description	format
MsgID	The message ID of the message containing the parameters	word
LaserCurrent	The Laser current (-32768 to 32767 -> -200 to 200 mA)	word
LaserPower	The Laser power (0 to 32767 -> 0% to TIA Range Max in mA)	word
LaserVoltage	The Laser forward voltage (-10000 to 10000 -> _10.0 V to 10.0 V)	word

Example: Get the laser current and power

RX 02, 08, 08, 00, D0, 01, 04, 00, 66, 06, 66, 06, 88, 13

Header: 02, 08, 08, 00, D0, 01: Set_PARAMS, 08 byte data packet, Generic USB Device. *MsgID: 04, 00*: Get Laser Current and Power

LaserCurrent:.66, 06: the laser current, 0x0666 (1638 decimal), which is 5 mA for a 100 mA max current laser.

LaserPower:.66, 06: the laser power, 0x0666 (1638 decimal), which is 5% of the full power. *LaserVoltage*:.88, 13: the laser voltage, 0x1388 (5000 decimal), which is 5V

Example - Set/Request/Get the Laser Power Control Source (sub-message ID = 5)

This sub-command is used to set / read the laser power control source. The laser power can be controlled by software commands, the potentiometer on the top of the unit or the external SMA input. Only one control source can be active at any time, the options are mutually exclusive.

SET:

Command structure (10 bytes) 6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
		hea		Da	ıta				
00	08	04	00	d	S	MsgID LaserSour			ource

Data Structure:

field	description	format
MsgID	The message ID of the message containing the parameters	word
LaserSource	The Laser power source. This parameter is different	word
	depending on which unit is being address, as follows	
	TLD	
	1 = Software control only	
	2 = External source via SMA connector only	
	4 = Potentiometer only	
	TLS	
	0 = Software control only	
	1 = External source via SMA connector only	
	4 = Potentiometer only	
	KLD and KLS	
	0 = Software control only	
	1 = External source via SMA connector only	
	4 = Top panel wheel and Software	
	8 = Reserved	

Example: Set the laser power source to be external SMA input on a TLS001 unit.

TX 00, 08, 04, 00, D0, 01, 05, 00, 01, 00

Header: 00, 08, 04, 00, D0, 01: Set_PARAMS, 04 byte data packet, Generic USB Device. *MsgID: 05, 00*: Set Laser Power Source *LaserSource*:.01, 00: the laser power source is the external SMA input.

REQUEST:

Command structure (6 bytes):

0	0 1 2 3 4						
header only							
01 08 05 00 d s							

TX 01, 08, 01, 00, 50, 01,

GET:

Command structure (10 bytes) 6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
	header							ıta	
02	08	04	00	d	S	MsgID LaserSource			ource

See SET message for data structure

Request/Get Status Bits (sub-message ID = 7)

This sub command can be used to request the status bits. The message only has a request/ get part.

REQUEST:

Command structure (6 bytes):

0	1	4	5				
header only							
01	d	S					

TX 01, 08, 07, 00, 50, 01,

GET:

Status update messages are received with the following format:-

Response structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
	header						Data					
02	08	06	00	d	S	Ms	gID	StatusBits				

Data Structure:

field	description	format
MsgID	The message ID of the message containing the parameters	word
StatusBits	The meaning of the individual bits (flags) of the 32 bit integer value will depend on the controller and are	dword
	described in the following tables.	

TLS001 controller

Hex Value	Bit Number	Description
0x0000001	1	Laser output enabled state (1 - enabled, 0 - disabled).
0x0000002	2	Keyswitch enabled state (1 - enabled, 0 – disabled)
0x0000004	3	Laser control mode (1 - power [closed loop], 0 - current [open loop])
0x0000008	4	Safety interlock, (1 - enabled, 0 – disabled)
0x0000010	5	Units mode (1 - mA, else 0).
0x0000020	6	Units mode (1 - mW, else 0).
0x00000040	7	Units mode (1 - dBm, else 0)
	8	For Future Use

Example

RX 02, 08, 06, 00, 81, 50, 07, 00, 2B, 00, 00, 00

Header: 02, 08, 06, 00, 81, 50: LA_Get_Params, 06 byte data packet, Generic USB Device. *MsgID: 07, 00*: Get Status Bits

StatusBits: 2B,00,00,00, i.e. 00101011 the display shows mW units, the safety interlock is enabled, the keyswitch is enabled and the output is enabled.

Request/Get Maximum Limits (sub-message ID = 9)

This sub-message is not applicable to TLD001 Laser Driver units.

This sub command can be used to request the maximum limits of the laser source, such as maximum current, maximum power and the wavelength of the laser diode. The message only has a request/ get part.

REQUEST:

Command structure (6 bytes):

0	0 1 2 3 4						
header only							
01	01 08 09 00 d						

TX 01, 08, 09, 00, 50, 01,

GET:

Status update messages are received with the following format:-

Response structure (14 bytes)

6 byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13
		hea	ıder			Data							
02	08	08	00	d	S	Ms	gID	MaxCu	urrent	MaxP	ower	Wave	length

Data Structure:

field	description	format
MsgID	The message ID of the message containing the parameters	word
MaxCurrent	The Laser max current (0 to 65535 -> 0 to655.35 mA)	word
MaxPower	The Laser max power (0 to 65535 -> 0 to 6.5535 mW)	word
WaveLength	The Laser wavelength in nm (635 or 1550)	word

Example – Get Laser Limits

RX 02, 08, 08, 00, D0, 01, 09, 00, C8, 00, 05, 00, 0E, 06

Header: 00, 08, 06, 00, D0, 01: Set_PARAMS, 06 byte data packet, Generic USB Device. *MsgID: 09, 00*: Get Laser Max Limits

MaxCurrent:.C8, 00:, 0x00C8 i.e. 200mA max current.

MaxPower:.05, 00:, 0x0005 i.e. 5 mW max power.

Wavelength:.0E, 06: the laser power, 0x060E (1550 decimal), wavelength 1550 nm.

Request/Get Maximum Laser Diode Current (sub-message ID = 10 [0A]) This sub-message is applicable only to TLD001 Laser Diode Driver units. This sub command can be used to request the TLD001 maximum laser diode current. The message only has a request/ get part.

REQUEST: Command structure (6 bytes):

0	1	4	5				
header only							
01 08 0A 00 d s							

TX 01, 08, 0A, 00, 50, 01,

GET:

Status update messages are received with the following format:-

Response structure (10 bytes)

6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
	header						D	ata	
02	08	04	00	d	S	MsgID MaxCurrent			urrent

Data Structure:

field	description	format
MsgID	The message ID of the message containing the parameters	word
MaxCurrent	The Laser max current (-32768 to 32767 -> -Min mA to Max mA)	word

Example – Get Laser Limits

RX 02, 08, 04, 00, D0, 01, 0A, 00, C8, 00, 05, 00, 0E, 06

Header: 02, 08, 04, 00, D0, 01: Set_PARAMS, 04 byte data packet, Generic USB Device. *MsgID: 0A, 00*: Get Laser Max Limits *MaxCurrent*:.C8, 00:, 0x00C8 i.e. 200mA max current.

Set/Request/Get Display Settings (sub-message ID = 11 [0B])

This message can be used to adjust or read the front panel LED display brightness and the display units. It is not applicable to KLSxxx units.

SET:

Command structure (14 bytes) 6 byte header followed by 8 byte data packet as follows:

0		1	2	3	4	5	6	7	8	9	10	11	12	13
			hea	ıder			Data							
00)	08	08	00	d	S	MsgID DispIn		tensity	Disp	Units	Unu	ised	

Data Structure:

field	description	format
MsgID	The message ID of the message containing the parameters	word
DispIntensity	The intensity is set as a value from 0 (Off) to 255 (brightest).	word
DispUnits	 The LED display window on the front of the unit can be set to display the laser output in mA, mW or dBm as follows. display shows laser current in mA. display shows laser power in mW. display shows laser power in dBm (relative to 1 mW) 	word
Unused	N/A	word

Example: Set the display to show the laser current in Amps and at max brightness:

TX 00, 08, 08, 00, D0, 01, 0B, 00, FF, 00, 01, 00, 00, 00

Header: 00, 08, 08, 00, D0, 01: Set_Params, 08 byte data packet, Generic USB Device. MsgID: 0B, 00: Set Display Settings DispIntensity: FF, 00: Sets the display brightness to 255 (100%) DispUnits: 01, 00: Sets the display units to mA

REQ:

Command structure (6 bytes):

0	1	2	3	4	5				
header only									
01 08 0B 00 d s									

Example:

TX 01, 08, 0B, 00, 50, 01

GET:

Command structure (14 bytes) 6 byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13
		hea	der			Data							
02	08	08	00	d	S	MsgID DispIntensity DispUnits				Unu	ised		

See SET for data structure.

Set/Request/Get Miscellaneous Laser Driver Parameters (sub-message ID = 13 [0D]) This message is applicable only to TLD001 Laser Diode Driver units.

Each laser diode has specific relationship between the output power and the photodiode current. This message sets the polarity and the calibration factor for converting between output power and the photodiode current.

The calibration factor for the type of laser diode being used is set in the WACalibFactor parameter. For example, if set to 10, a photodiode current of 1mA produces an output power of 10mW.

The calibration factor for the particular laser diode being used should be quoted in the associated data sheet. If this is not available, then a test calibration should be performed, using a power meter to measure the output for a known photodiode current.

Laser diodes are manufactured in a variety of packages and pin configurations, with or without an internal photodiode. In addition, normally one terminal of the laser diode is connected to the metal case and commoned with either the anode or cathode of the photodiode. This can be established from the laser diode data sheet and the device should be connected to the laser driver accordingly.

This message configures the unit for either an anode grounded or a cathode grounded diode. The polarity of the laser diode connected to the TLD001 unit is specified in the LaserPolarity parameter.

By default, when the output is enabled, the laser current will be increased immediately to max current. If required, the output current can be increased gradually in steps 10% of selected max current output. This option is set in the Rampup parameter.

SET:

Command structure (16 bytes) 6 byte header followed by 10 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder			Data					
00	08	08	00	d	S	Ms	gID	WACalibFactor			

12	13	14	15					
	Data							
LaserPo	larity	Ram	ipup					

Data Structure:

field	description	format
MsgID	The message ID of the message containing the parameters	word
WACalibFactor	The calibration factor used to convert photo diode current (IPD) to output laser power (PLD).	float
LaserPolarity	The laser diode connection polarity as follows.1 cathode grounded2 anode grounded	word
Rampup	 The method of energizing the laser. 1 Rampup selected - the output current is increased gradually in steps 10% of selected max current output 	word

Example: Set the unit to have a calibration factor of 10, for a cathode grounded laser diode:

TX 00, 08, 08, 00, D0, 01, 0D, 00, 0A, 00, 00, 00, 01, 00, 00, 00

Header: 00, 08, 08, 00, D0, 01: Set_Miscellaneous Params, 08 byte data packet, Generic USB Device.

MsgID: 0D, 00: Set Miscellaneous Parameters WACalibFactor: 0A, 00, 00, 00: Sets the calibration factor to 10 LaserPolarity: 01, 00: Sets the polarity to Cathode Grounded Rampup: 00, 00: The laser current is increased immediately to maximum.

REQ:

Command structure (6 bytes):

0	1	2	3	4	5					
	header only									
01 08 0B 00 d s										

Example:

TX 01, 08, 0D, 00, 50, 01

GET:

Command structure (16 bytes) 6 byte header followed by 10 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder			Data					
02	08	08	00	d	S	Ms	gID	WACalibFactor			

12	13	14	15				
Data							
LaserPo	Unu	ised					

See SET for data structure.

Set/Request/Get MMI Parameters (sub-message ID = 14 [0E]) Applicable only to KLSxxx units.

This message can be used to adjust or read the front panel LED display brightness.

SET:

Command structure (16 bytes)

6 byte header followed by 10 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13
		hea	ıder			Data							
00	08	08	00	d	S	SubN	ubMsgID DispIntensity For Future Use						

Data Structure:

field	description	format
MsgID	The message ID (i.e. 0E00) of the message containing the	word
	parameters	
DispIntensity	The intensity is set as a percentage of maximum	word
	brightness, from 20 (dimmest) to 100 (brightest).	

Example:Set the display to max brightness,TX 00, 08, 08, 00, D0, 01, 0B, 00, 64, 00, 00, 00, 00, 00

Header: 00, 08, 0A, 00, D0, 01: LA_SetParams, 08 byte data packet, Generic USB Device.
SubMsgID: 0E, 00: Set Display Settings
DispIntensity: 64, 00: Sets the display brightness to 100%

REQ:

Command structure (6 bytes):

0	1	2	3	4	5				
	header only								
01	01 08 0B 00 d s								

Example:

TX 01, 08, 0E, 00, 50, 01

GET:

Command structure (14 bytes) 6 byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13
		hea	der						Ľ	Data			
02	08	08	00	d	S	SubMsgID DispIn			tensity		For Fu	ture Use	

See SET for data structure.

Set/Request/Get LA_KLDDigOutputs (sub-message ID =17 (0x11)

This sub-message is applicable only to KLD101 units.

Used to set the digital outputs of the KLD101 unit, if the trigger port is to be used as a general purpose digital output (i.e. trigger mode set to 0x0A TRIGOUT_GPO). The logic state of the output can be inverted by setting the Triggering Polarity parameter to "Low"; with this option selected the state of the output will be the opposite of the corresponding bit setting in the software call. The default state of the output in this mode is also the opposite of the option selected as the Triggering Polarity.

SET

Command structure (12bytes)

6 byte header followed by 6 byte data packet.

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder					Da	ıta		
00	08	06	00	d	S	SubN	1sgID	Dig	OPs	Rese	rved

Data Structure:

field	description	format
SubMsgID	The message ID (i.e. 1100) of the message containing	word
	the parameters	
DigOPs	The status of the digital outputs. The lowest two bits	word
	relate to TRIG1 and TRIG2	
Reserved		

Example: Set both Digital Outputs to ON:

TX 00, 08, 06, 00, D0, 01, 10, 00, 11, 00, 00, 00,

Header: 00, 08, 06, 00, D0, 01: LA_SetParams, 6 byte data packet, Generic USB Device. SubMsgID: 11, 00 SetKLDDigOutputs DigOPs – 11, 00 I/O 1 and I/O 2 outputs set to ON (High).

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5	
header only						
71	08	01	00	d	S	

GET:

Response structure (12 bytes): 6 byte header followed by 6 byte data packet.

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder					Da	ıta		
01	08	0C	00	d	S	SubN	1sgID	Dig	OPs	Rese	rved

For structure see SET message above.

MGMSG_LA_SET_EEPROMPARAMS

Function:Used to save the parameter settings for the specified message.
These settings may have been altered either through the various
method calls or through user interaction with the GUI (specifically,
by clicking on the 'Settings' button found in the lower right hand
corner of the user interface).

SET:

Command structure (8 bytes) 6 byte header followed by 2 byte data packet as follows:

0	1	2	3	4	5	6	7
		hea	ıder			Do	nta
10	08	02	00	d	S	Ms	gID

Data Structure:

field	description	format
MsgID	The message ID of the message containing the parameters	word
	to be saved.	

Example:

TX 10, 08, 02, 00, D0, 01, 21, 08,

Header: 10, 08, 02, 00, D0, 01: Set_EEPROMPARAMS, 02 byte data packet, Generic USB Device.

MsgID: Save parameters specified by message 0821 (GetStatusUpdate).

MGMSG_LA_ENABLEOUTPUT MGMSG_LA_DISABLEOUTPUT

0x0811 0x0812

FunctionThese messages are sent to enable or disable the Laser output.The 3rd and 4th bytes in the command header are unused and set to
0x00.

SET:

Command structure (6 bytes):

0	1	2	3	4	5		
	header only						
11	08	00	00	d	S		

Example:

Enable the laser output

TX 11, 08, 00, 00, 50, 01

Disable the laser output

TX 12, 08, 00, 00, 50, 01

MGMSG_LD_OPENLOOP MGMSG_LD_CLOSEDLOOP

0x0813 0x0814

These messages are applicable only to TLD001 Laser Diode Driver units

Function	The TLD001 laser diode driver can be operated in either Constant Current or Constant Power mode. In OPEN LOOP or Constant Current Mode (CONST I), a constant drive current is applied to the laser diode. However, due to temperature fluctuations this does not result in a constant optical power output. As the diode warms up, the optical power will increase noticably from the level at initial switch on. Ambient temperature changes will also affect the output. This mode is used when the lowest noise and highest response speed is required. Most applications in this mode will also require the temperature to be stabilized by an additional temperature controller. We offer the TTC001 TEC Controller T-Cube for such applications, see www.thorlabs.com for more details.
	CLOSED LOOP or Constant Power Mode (CONST P) is used to minimize the output power fluctuations described above. This involves a signal from the internal photodiode, integrated into most laser diode packages, being fed back to the TLD001 unit in order to monitor and correct the power output. An adjustment of the full scale photodiode current in CONST P mode is provided on the unit, in order to compensate for the differences in the photodiode currents between different laser diodes - see the manual supplied with the unit for more information on setting the photodiode current range.

SET:

Command structure (6 bytes):

5	4	3	2	1	0
		ler only	head		
S	d	00	00	08	13
	d	00	00	08	13

Example:

Set the control mode to constant current (open loop)

TX 13, 08, 00, 00, 50, 01

Set the control mode to constant power (closed loop)

TX 14, 08, 00, 00, 50, 01

MGMSG_LD_POTROTATING

This message is applicable only to TLD001 Laser Diode Driver units

FunctionThis message is sent automatically by the system when the
potentiometer on the TLD001 laser diode driver GUI panel is rotated
by the user.
It contains the amount the pot has rotated (in degrees in bytes 2
and 3) since the last time the message was sent. This is represented
as a signed short.

SET: Command structure (6 bytes):

5
S

0x0815

MGMSG_LD_MAXCURRENTADJUST

This message is applicable only to TLD001 Laser Diode Driver units

In order to protect against damage which could be caused by operating errors, the limit for the Laser Diode drive current should be set before the diode is operated. This message is called to enable and disable adjustment by setting byte 2 as follows: Disable – 1 Enable - 2. Note. When this message is called, the maximum current is reset to its minimum value (around 17mA). This ensures that initially, the laser current is at its lowest value.

Once Max Current Adjustment is enabled, the max current is set by calling the SET_MAXCURRENTDIGPOT message.

Byte 3 of the message is used to allow the current limit to be adjusted with the laser diode ON as follows: Diode off - 1 Diode on - 2

SET:

Function

Command structure (6 bytes):

0	1	2	3	4	5			
header only								
13	08	00	00	d	S			

Example:

Set the unit to allow the laser diode max current to be adjusted with the output on

TX 13, 08, 02, 02, 50, 01

0x0816

MGMSG_LD_SET_MAXCURRENTDIGPOT MGMSG_LD_REQ_MAXCURRENTDIGPOT MGMSG_LD_GET_MAXCURRENTDIGPOT

0x0817 0x0818 0x0819

This message is applicable only to TLD001 and KLD101 Laser Diode Driver units

FunctionIn order to protect against damage which could be caused by
operating errors, the limit for the Laser Diode drive current should
be set before the diode is operated.
Before calling this message, max current adjustment must be
enabled by calling the MAXCURRENTADJUST message described
previously. This message can then be called to set the max current
for the laser diode being driven.
Note. When this message is called, the maximum current is reset to
its minimum value (around 17mA for the TLD001 and 15 mA for the
KLD101). This ensures that initially, the laser current is at its lowest
value.

The max current is set in the range 0 to 255 which relates to 0 to 200 mA for the TLD001 or 230 mA for the KLD101.

SET: Command structure (6 bytes):

1	2	3	4	5			
header only							
08	FF	00	d	S			
	1 08		,	,			

Example:

Set the max current to 200 mA

TX 13, 08, FF, 00, 50, 01

MGMSG_LD_FINDTIAGAIN

0x081A

This message is applicable only to TLD001 and KLD101 Laser Diode Driver units

Function This message instructs the unit to find the optimum TIA gain setting for the TIA range currently selected. Optimization of the TIA gain is an automated process performed internally by the unit, and should be performed only after the PD RANGE has been adjusted by setting the switches on the rear panel. In the Thorlabs Software system, the software "demand" of how much current (in constant current mode) or optical power (in closed loop mode) is being generated by the laser diode is set by a digital to analog converter (DAC). This DAC produces a voltage that the software can set to be between zero and a fixed reference voltage. When constant power mode is selected, a closed loop controller is set up that continuously reads the photocurrent and adjusts the laser power accordingly, so that the photocurrent is always equal to a "set point" value (the optical power is kept constant by keeping the photocurrent constant.). To enable the full range of the DAC to be used, the photodiode current readings must be "normalized", so that the full range (i.e. maximum photocurrent) corresponds to the DAC full range. This normalization is performed when this message is called. For example, assume the DAC generates a voltage between zero and 5 Volts maximum. In a particular set up, we may find that at maximum optical power, the photodiode produces 25 µA. When the message is called, the system adjusts the photodiode TIA gain to 0.2 $V / \mu A$ so that the photodiode amplifier outputs 5 Volts. In another setup, the photodiode produces a different current for max optical power, so a different photodiode amplifier gain is required.

Note. This message is sent automatically by the system once TIA Gain Adjustment is enabled by calling the LD_TIAGAINADJUST message.

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
1A	08	00	00	d	S		

MGMSG_LD_TIAGAINADJUST

0x081B

This message is applicable only to TLD001 and KLD101 Laser Diode Driver units

FunctionThis message is called to enable and disable TIA gain adjustment by
setting byte 2 as follows:
Disable - 1
Enable - 2.
Once adjustment is enabled, the system sends the LD_FINDTIAGAIN
message described previously to optimize the TIA gain for the range
currently selected.

SET:

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
1B	08	02	00	d	S		
18	08	02	00	a			

Example: Set the unit to allow the TIA gain to be adjusted

TX 1B, 08, 02, 00, 50, 01

MGMSG_LA_REQ_STATUSUPDATE MGMSG_LA_GET_STATUSUPDATE

0x0820 0x0821

 Function:
 This function is used in applications where spontaneous status messages (i.e. messages sent using the START_STATUSUPDATES command) must be avoided.

Status update messages contain information about the status of the controller (for example laser power or laser current). The response will be sent by the controller each time the function is requested.

REQUEST: Command structure (6 bytes):

0	1	2	3	4	5		
header only							
20	08	00	00	d	S		

GET:

Status update messages are received with the following format:-

Response structure (14 bytes)

6 byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13
	header								D	ata			
21	08	08	00	d	S	LaserC	urrent	LaserF	ower	StatusBits			

Data Structure:

field	description	format
LaserCurrent	The laser current, in the range 0 to 32760 – (i.e. 0 to max current in mA)	word
LaserPower	The.laser power, in the range 0 to 32760 – (i.e. 0 to 100% of max power)	word
StatusBits	The meaning of the individual bits (flags) of the 32 bit integer value will depend on the controller and are described in the following tables.	dword

TLS001 Controller Bit Locations

Hex Value	Bit Number	Description
0x0000001	1	Laser output enabled state (1 - enabled, 0 - disabled).
0x0000002	2	Keyswitch enabled state (1 - enabled, 0 – disabled)
0x0000004	3	Laser control mode (1 - power [closed loop], 0 - current [open loop])
0x0000008	4	Safety interlock, (1 - enabled, 0 – disabled)
0x00000010	5	Units mode (1 - mA, else 0).
0x0000020	6	Units mode (1 - mW, else 0).
0x00000040	7	Units mode (1 - dBm, else 0)
	8 to 20	For Future Use

General Bit Locations

Hex Value	Bit Number	Description
0x00100000	21	Digital Input 1 (1 – logic high, 0 – logic low).
0x00200000	22	Digital Input 2 (1 – logic high, 0 – logic low).
0x40000000	31	Error

KLS101 Controller Bit Locations

Hex Value	Bit Number	Description
0x0000001	1	Laser output enabled state (1 - enabled, 0 - disabled).
0x0000002	2	Keyswitch enabled state (1 - enabled, 0 – disabled)
0x0000004	3	Laser control mode (1 - power [closed loop], 0 - current [open loop])
0x0000008	4	Safety interlock, (1 - enabled, 0 – disabled)
0x0000010	5 to 7	For Future Use
	8 to 19	Ext Input 12 bit ADC reading (1 LSB = 2.54mV, range 0 to 10.42V)

General Bit Locations

Hex Value	Bit Number	Description
0x00100000	20 to 30	For Future Use
0x00200000	31	Error (pigtail temperature > 50 °C)
0x40000000	31	Digital Feedback Settling

Example

RX 21, 08, 08, 00, 81, 50, 90, 19, 90, 19, 2B, 00, 00, 00

Header: 21, 08, 08, 00, 81, 50: LA_Get_StatusUpdate, 08 byte data packet, Generic USB Device.

LaserCurrent: 90, 19: 6544 = 20 % of the maximum current;

LaserPower: 90, 19: 6544 = 20 % of the maximum power;

StatusBits: 2B,00,00,00, i.e. 00101011 the display shows mW units, the safety interlock is enabled, the keyswitch is enabled and the output is enabled.

MGMSG_LA_ACK_STATUSUPDATE

0x0822

Only Applicable If Using USB COMMS. Does not apply to RS-232 COMMS

Function:If using the USB port, this message called "server alive" must be sent
by the server to the controller at least once a second or the
controller will stop responding after ~50 commands.
The controller keeps track of the number of "status update" type of
messages (e.g.status message) and it if has sent 50 of these without
the server sending a "server alive" message, it will stop sending any
more "status update" messages.

This function is used by the controller to check that the PC/Server has not crashed or switched off. There is no response.

Structure (6 bytes):

0	1	2	3	4	5		
header only							
22	08	00	00	d	S		

TX 22, 08, 00, 00, 50, 01

MGMSG_LD_REQ_STATUSUPDATE MGMSG_LD_GET_STATUSUPDATE

0x0825 0x0826

Function:This function is used in applications where spontaneous status
messages (i.e. messages sent using the START_STATUSUPDATES
command) must be avoided.
Status update messages contain information about the position and
status of the controller (for example position and O/P voltage). The
response will be sent by the controller each time the function is
requested.

REQUEST: Command structure (6 bytes):

0	1	2	3	4	5		
header only							
20	08	d	S				

GET:

Status update messages are received with the following format:-

Response structure (20 bytes)

6 byte header followed by 14 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
header							Data				
26	08	OE	00	d	S	Laser	LaserCurrent PhotoCurrent LaserVolta				Voltage
								_			
12	13	14	15	16	17	18	19				
	Data										
Reserved Status						sBits					

Data Structure:

field	description	format			
LaserCurrent	The laser diode current, in the range -32768 to 32767 – (i.e.	word			
	-200 to 200 mA)				
PhotoCurrent	rent The photo diode current, in the range 0 to 32767 – (i.e. 0 to				
	TIA Range Max in mA)				
LaserVoltage	Laser Diode forward voltage -10000 to 10000 (-10.0V to	word			
	10.0V)				
Reserved		dword			
StatusBits	The meaning of the individual bits (flags) of the 32 bit	dword			
	integer value will depend on the controller and are				
	described in the following tables.				

Hex Value	Bit Number	Description					
0x0000001	1	Laser output enabled state (1 - enabled, 0 - disabled).					
0x0000002	2	Keyswitch enabled state (1 - enabled, 0 – disabled)					
0x0000004	3	Laser control mode (1 - power [closed loop], 0 - current [open loop])					
0x0000008	4	Safety interlock, (1 - enabled, 0 – disabled)					
0x0000010	5	TIA Range 1 (1 – 10μΑ, else 0).					
0x0000020	6	TIA Range 2 (1 – 100μA, else 0).					
0x00000040	7	TIA Range 3 (1 – 1 mA, else 0)					
0x0000080	8	TIA Range 4 (1 – 10 mA, else 0)					
0x00000100	9	Laser Diode Polarity (1 – Cathode Grounded, 0 – Anode Grounded)					
0x00000200	10	External SMA Input Enabled (1 – Enabled, 0 – Disabled)					
0x0000800	12	Laser Diode Open Circuit (1 – O/C, 0 – S/C)					
0x00001000	13	All PSU Voltages OK (1 – OK, 0 – Not OK)					
0x00002000	14	TIA Range Overlimit (1 – Overlimit, 0 – Not Overlimit)					
0x00004000	15	TIA Range Underlimit (1 – Underlimit, 0 – Not Underlimit)					

TLD001 controller Bit Locations

KLD101 controller Bit Locations

Hex Value	Bit Number	Description
0x0000001	1	Laser output enabled state (1 - enabled, 0 - disabled).
0x0000002	2	Keyswitch enabled state (1 - enabled, 0 – disabled)
0x00000004	3	Laser control mode (1 - power [closed loop], 0 - current [open loop])
0x0000008	4	Safety interlock, (1 - enabled, 0 – disabled)
0x00000010	5	TIA Range 1 (1 – 9μA, else 0).
0x00000020	6	TIA Range 2 (1 – 100μA, else 0).
0x00000040	7	TIA Range 3 (1 – 0.9 mA, else 0)
0x0000080	8	TIA Range 4 (1 – 10 mA, else 0)
0x00000100	9	Laser Diode Polarity (1 – Cathode Grounded, 0 – Anode Grounded)
0x00000200	10	External SMA Input Enabled (1 – Enabled, 0 – Disabled)
0x00000800	12	Laser Diode Open Circuit (1 – O/C, 0 – S/C)
0x00001000	13	All PSU Voltages OK (1 – OK, 0 – Not OK)
0x00002000	14	TIA Range Overlimit (1 – Overlimit, 0 – Not Overlimit)
0x00004000	15	TIA Range Underlimit (1 – Underlimit, 0 – Not Underlimit)

General Bit Locations

Hex Value	Bit Number	Description			
0x00080000	20	Signal Generator ON (1 –YES, 0 – NO)			
0x00100000	21	Digital Input 1 (1 – logic high, 0 – logic low).			
0x00200000	22	Digital Input 2 (1 – logic high, 0 – logic low).			
0x40000000	31	Error			
0x80000000	32	High stability reached (1 –YES, 0 – NO)			

MGMSG_LD_ACK_STATUSUPDATE

0x0827

Only Applicable If Using USB COMMS. Does not apply to RS-232 COMMS

Function:If using the USB port, this message called "server alive" must be sent
by the server to the controller at least once a second or the
controller will stop responding after ~50 commands.
The controller keeps track of the number of "status update" type of
messages (e.g.move complete message) and it if has sent 50 of
these without the server sending a "server alive" message, it will
stop sending any more "status update" messages.
This function is used by the controller to check that the PC/Server
has not crashed or switched off. There is no response.

Structure (6 bytes):

0	1	2	3	4	5			
header only								
27	08	d	S					

TX 27, 08, 00, 00, 50, 01

MGMSG_LA_SET_KCUBETRIGIOCONFIG MGMSG_LA_REQ_KCUBETRIGCONFIG MGMSG_LA_GET_KCUBETRIGCONFIG

0x082A 0x082B 0x082C

This message is applicable only to KLS635 and KLS1550 units

Function:The K-Cube laser source units have two bidirectional trigger ports
(TRIG1 and TRIG2) that can be used to read an external logic signal
or output a logic level to control external equipment. Either of them
can be independently configured as an input or an output and the
active logic state can be selected High or Low to suit the
requirements of the application. Electrically the ports output 5 Volt
logic signals and are designed to be driven from a 5 Volt logic.
When the port is used in the input mode, the logic levels are TTL
compatible, i.e. a voltage level less than 0.8 Volt will be recognised
as a logic LOW and a level greater than 2.4 Volt as a logic HIGH. The
input contains a weak pull-up, so the state of the input with nothing
connected will default to a logic HIGH. The weak pull-up feature
allows a passive device, such as a mechanical switch to be
connected directly to the input.

When the port is used as an output it provides a push-pu Il drive of 5 Volts, with the maximum current limited to approximately 8 mA. The current limit prevents damage when the output is accidentally shorted to

ground or driven to the opposite logic state by external circuity. **Warning**: do not drive the TRIG ports from any voltage source that can produce an output in excess of the normal 0 to 5 Volt logic level range. In any case the voltage at the TRIG ports must be limited to -0.25 to +5.25 Volts.

SET

Command structure (20 bytes)

6 byte header followed by 14 byte data packet.

_												
	0	1	2	3	4	5	6	7	8	9	10	11
			hea	ıder			Data					
	2A	08	0C	00	d	S	Chan Ident		Trig1	Mode	Trig1P	olarity
	12	13	14	15	16	17	18	19]			

12	12 13		14 15		16 17		19		
	Data								
Reserved		Trig2	Mode	Trig2P	olarity	Reserved			
Data Structure:

field	description	format
Chan Ident	The channel being addressed is always encoded as a 16-bit word (0x01 0x00)	word
Trig1Mode	TRIG1 operating mode	word
Trig1Polarity	The active state of TRIG1 (i.e. logic high or logic low) I.	word
Reserved		
Trig2Mode	TRIG2 operating mode	word
Trig2Polarity	The active state of TRIG2 (i.e. logic high or logic low)	word
Reserved		

Input Trigger Modes

When configured as an input, the TRIG ports can be used as a general purpose digital input, or for triggering a choice of actions as follows:

- 0x00 The trigger IO is disabled
- 0x01 General purpose logic input (read through status bits using the LA_GET_STATUSUPDATE message or the Get Status Bits sub message of the LA_GET_PARAMS message).

When used for triggering, the port is edge sensitive. In other words, it has to see a transition from the inactive to the active logic state (Low->High or High->Low) for the trigger input to be recognized. For the same reason a sustained logic level will not result in repeated trigger signals. The trigger input has to return to its inactive state first in order to start the next trigger.

Output Trigger Modes

When configured as an output, the TRIG ports can be used as a general purpose digital output, or to indicate status or to produce a trigger pulse at configurable events as follows:

- 0x0A General purpose logic output (set using the MOD_SET_DIGOUTPUTS message).
- 0x0B Trigger output active when the laser output is ON. The output trigger goes high (5V) or low (0V) (as set in the Polarity parameter) when the laser is active.
- 0x0C Trigger output active when the interlock state is Enabled
- 0x0D Trigger output active when the laser set point value is changed. (pulse signal)

REQ:

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
2B	08	Chan	00	d	S		
		Ident					

Example:

Request the Trigger IO settings

TX 2B, 08, 01, 00, 50, 01

GET:

Response structure (18 bytes): 6 byte header followed by 12 byte data packet.

0	1	2	3	4	5	6	7	8	9	10	11
header							Da	ıta			
2C	08	0C	00	d	S	Chan Ident		Trig1	Mode	Trig1P	olarity
12	13	14	15	16	17	18	19				
			Do	ıta							
Trig	1Par	Trig2	Mode	Trig2P	olarity	Trig	2Par				

For structure see SET message above.

Quad Control Messages

Introduction

The 'Quad' ActiveX Control provides the functionality required for a client application to control one or more T-Cube Quad Detector Readers or Position Aligners.

The methods of the Quad Control Object can then be used to control the TQD001 T-Cube Quad Reader, the TPA101 T-Cube Position Aligner and the KPA101 K-Cube Position Aligner, to perform activities such as switching between Monitor, Open Loop and Closed Loop operating modes, setting the position demand parameters, reading the present beam position and setting the LED display intensity.

For details on the use of the T-Cubes and K-Cube, refer to the handbook supplied for the unit.

MGMSG_QUAD_SET_PARAMS MGMSG_QUAD_REQ_PARAMS MGMSG_QUAD_GET_PARAMS

0x0870	
0x0871	
0x0872	

Function: This generic parameter set/request message is used to control the functionality of the TQD001, TPA101 and KPA101 units. The specific parameters to control are identified by the use of sub-messages. These sub messages comply with the general format of the Thorlabs message protocol but rather than having a unique first and second byte in the header carrying the "message identifier" information, the first and second byte remain the same. Instead, for the SET and GET messages, the message identifier is carried in the first two bytes in the data packet part of the message, whilst for the REQ message it is encoded as the third byte of the header. Likewise, when the unit responds, the first two bytes of the response remain the same and the first two bytes of the data packet identify the sub-message to which the information returned in the remaining part of the data packet relates.

The following sub messages are applicable to the TQD001, TPA101 and KPA101:

Set/Request/Get Quad_LoopParams (sub-message ID = 01) Request/Get Quad_Readings (sub-message ID = 03) Set/Request/Get Quad Position Demand Params (sub-message ID = 05) Set/Request/Get Quad Operating Mode (sub-message ID = 07) Request/Get Quad Status Bits (sub-message ID = 09) Set/Request/Get Quad Display Settings (sub-message ID = 0B) Set/Request/Get Quad Position Demand Outputs (sub-message ID = 0D)

The following sub message is applicable only to the TPA101 and KPA101:

Set/Request/Get Quad_LoopParams2 (sub-message ID = 0E)

To explain the principle, the following examples describe these messages in more detail.

Set/Request/Get Quad_LoopParams (sub-message ID = 01)

Used to set the proportional, integration and derivative feedback loop constants to the value specified in the PGain, IGain and DGain parameters respectively. They apply when the quad detector unit is operated in closed loop mode, and position demand signals are generated at the rear panel SMA connectors by the feedback loops. These position demand voltages act to move the beam steering elements (e.g. a piezo driven mirror) in order to centralize a beam at the centre of the PSD head.

When operating in closed loop mode, the proportional, integral and derivative (PID) constants can be used to fine tune the behaviour of the dual feedback loops to adjust the response of the position demand output voltages. The feedback loop parameters need to be adjusted to suit the different types of sensor that can be connected to the system. The default values have been optimized for the PDQ80A sensor.

SET:

Command structure (14 bytes)

6 byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13
		hea	der			Data							
70	08	08	00	d	S	SubN	1sgID	PG	ain	IG	ain	DG	ain
Data St	tructur	٥.											

Data Structure:

field	description	format
SubMsgID	The message ID (i.e. 0100) of the message containing the parameters	word
PGain	The proportional gain. This term provides the force used to drive the piezo to the demand position, reducing the positional error. Together with the Integral and Derivative, these terms determine the system response characteristics and accept values in the range 0 to 32767 (i.e. 0 to 100 in Thorlabs User GUI).	word
IGain	The integral gain. This term provides the 'restoring' force that grows with time, ensuring that the positional error is eventually reduced to zero. Together with the Proportional and Derivative, these terms determine the system response characteristics and accept values in the range 0 to 32767 (i.e. 0 to 100 in Thorlabs User GUI).	word
DGain	The derivative gain. This term provides the 'damping' force proportional to the rate of change of the position. Together with the Proportional and Integral, these terms determine the system response characteristics and accept values in the range 0 to 32767 (i.e. 0 to 100 in Thorlabs User GUI).	word

Example: Set the PID parameters for TQD001 or TPA101 as follows: Proportional: 65 Integral: 80 Derivative: 60

TX 70, 08, 08, 00, D0, 01, 01, 00, 41, 00, 50, 00, 3C, 00,

Header: 70, 08, 08, 00, D0, 01: Quad_SetParams, 8 byte data packet, Generic USB Device. SubMsgID: 01, 00 SetQuadControlLoopParams) PGain: 32, 53,(32767x65/100): Set the proportional term to 65 IGain: 65, 66, (32767x80/100): Set the integral term to 80 DGain: CC, 4C, (32767x60/100): Set the derivative term to 60

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5			
	header only							
71	08	01	00	d	S			

GET:

6 byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13
		hea	der			Data							
72	08	08	00	d	S	SubN	1sgID	PG	ain	IGa	ain	DG	ain

For structure see Set message above.

Request/Get Quad_Readings (sub-message ID = 3)

The TQD001, TPA101 and KPA101 control units have been designed to operate with the PDQ80A and PDQ30C Quad Detectors and the PDP90A Lateral Effect Position Sensor. These detectors consist of a 4-segment photodiode sensor array, which provides 'Bottom minus Top' (YDIFF) and 'Left minus Right' (XDIFF) difference signals, together with the SUM of the signals (total beam power) from all four quadrants of the photodiode array. This sub-message is used to read the actual SUM, XDIFF and YDIFF signals from the detector. Whether these signals are routed to the LV OUT/XDIFF and LV OUT/YDIFF SMA connectors on the rear panel depends on the operating mode selected (see the <u>Quad_OperMode</u> message) as follows.

In 'Closed Loop' mode, the signal from the detector is interpreted by the unit, and the feedback circuit sends position demand signals (XOut and YOut) to the rear panel LV OUT/XDIFF and LV OUT/YDIFF connectors, which can be used to drive a pair of positioning elements (e.g. piezo controllers) in order to position the light beam within the center of the detector array. This submessage is then used to read the actual values for the XPos and YPos position demand signals (-10 V to +10V). Note that in closed loop mode, with the beam central, the X and Y axis difference outputs from the photodiode array are zero. However, the position demand signals on the rear panel LV OUT XDIFF and YDIFF SMA connectors are whatever value is necessary to drive the positioning elements to centre the beam.

When the unit is operated in 'open loop' mode, the signals on the rear panel XDIFF and YDIFF connectors are constant. They are either fixed at zero (0V), or held at the last Closed Loop value (depending on the '<u>QuadPosDemandParams</u>' message. This is useful when the system is being adjusted manually, to position the light beam within the detector array. When operating in 'Monitor' mode, the X axis (XDIFF) and Y axis (YDIFF) difference signals from the detector, are fed through to the rear panel SMA connectors for use in a monitoring application.

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5			
	header only							
71	08	03	00	d	S			

TX 71, 08, 03, 00, 50, 01,

GET:

Command structure (18 bytes) 6 byte header followed by 12 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder			Data					
72	08	0C	00	d	S	SubMsgID XDiff		YD	oiff		

12	13	14	15	16	17			
Data								
Su	m	XP	os	YPos				

Data Structure:

field	description	format
SubMsgID	The message ID (i.e. 0300) of the message containing the	word
	parameters	
XDiff	The present X axis difference (XDIFF) signal from the	short
	detector head. (-10V to 10V in the range -32768 to 32767)	
YDiff	The present Y axis difference (YDIFF) signal value from the	short
	detector head. (-10V to 10V in the range -32768 to 32767)	
Sum	The present Sum signal value from the detector head	word
	(0V to 10V in the range 0 to 65535)	
XPos	The X axis position output value on the rear panel XDiff SMA	short
	connector (-10V to 10V in the range -32768 to 32767)	
YPos	The Y axis position output value on the rear panel YDiff SMA	short
	connector (-10V to 10V in the range -32768 to 32767)	

Example: Get the Quad Detector T-Cube readings (T-Cube in open loop mode)

RX 72, 08, 0C, 00, D0, 01, 03, 00, FF, 3F, FF, 3F, FF, 7F, 00, 00, 00, 00

Header: 72, 08, 0C, 00, D0, 01: Quad_GetPARAMS, 12 byte data packet, Generic USB Device. MsgID: 03, 00: Get Quad Readings XDiff:.FF, 3F: 0x3FFF (16383 decimal), i.e. 5 V.

YDiff:. FF, 3F: 0x3FFF (16383 decimal), i.e. 5 V.

Sum: FF, FF: 0x7FFF (65535 decimal), i.e. 10 V.

XPos: 00, 00 i.e. Zero

YPos: 00, 00 i.e. Zero

Set/Request/Get Quad_PosDemandParams (sub-message ID = 5)

The TQD001, TPA101 and KPA101 control units have been designed to operate with the PDQ80A and PDQ30C Quad Detectors and the PDP90A Lateral Effect Position Sensor. These detectors consist of a 4-segment photodiode sensor array, which provides 'Bottom minus Top' (YDIFF) and 'Left minus Right' (XDIFF) difference signals, together with the SUM of the signals (total beam power) from all four quadrants of the photodiode array. Whether these signals are routed to the LV OUT/XDIFF and LV OUT/YDIFF SMA connectors on the rear panel depends on the operating mode selected – see the <u>Quad OperMode</u> message. This sub-message is used to control the signals on the rear panel LV OUT/XDIFF and LV OUT/YDIFF connectors.

SET:

Command structure (24 bytes) 6 byte header followed by 18 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
header								Da	ita		
70	08	12	00	d	S	SubMsgID XPosDemMin			emMin	YPosDemMin	
12	13	14	15	16	17	18	19	20	21	22	23
					Do	ita					
XPosDe	emMax	YPosDe	emMax	LVOut	Route			XPosFBSense		YPosFBSense	

field	description	format
SubMsgID	The message ID (i.e. 0500) of the message containing	word
	the parameters	
XPosDemandMin	The following four parameters are applicable only	short
	when operating in closed loop mode. The XOut and	
	YOut values are the low voltage signals sent to the LV	
	OUT/XDIFF and LV OUT/YDIFF connectors, which are	
	then used to drive the positioning mechanism in	
	order to keep the beam central in the detector.	
	Under normal operating conditions, these values are	
	between -10 V and +10 V, however some applications	
	may require the limits to be less than this. The	
	XPosDemandMin parameter is used to set the min	
	limit for the XOut value, between -10V and +10V.	
	(i.e32768 to 32767)	
YPosDemandMin	As above. The YPosDemandMin parameter is used to	short
	set the min limit for the YOut value, between -10V	
	and +10V. (i.e32768 to 32767)	
XPosDemandMax	As above. The XPosDemandMax parameter is used to	short
	set the max limit for the XOut value, between -10V	
	and +10V. (-32768 to 32767)	
YPosDemandMax	As above. The YPosDemandMax parameter is used to	short
	set the max limit for the YOut value, between -10V	
	and +10V. (-32768 to 32767)	
LVOutRoute	When operating in closed loop mode, the Quad	word
	Detector position control signals are always output	
	on the external SMA connectors (LV OUT XDiff and LV	

		I
	OUT YDiff). In addition, they can also be routed to the	
	TCH002 hub, which eliminates the need for external	
	SMA to SMA cables. This parameter is used to set the	
	LV Out signal routing as follows:	
	1 SMA Only	
	2 SMA + Hub	
OpenLoopPosDemands	When the Quad Detector T-Cube is operated in 'open	word
	loop' mode, the position demand signals (on the	
	XDIFF and YDIFF connectors) can either be set to	
	zero, or held at their last closed loop value, according	
	to the value entered in this parameter as follows:	
	1 OpenLoopPosDemandsZero - the output is	
	set to zero (0V).	
	2 OpenLoopPosDemandsHeld = the outputs	
	are fixed at the values present when the unit	
	is switched to open loop.	
XPosDemandFBSense	Due to the choice of piezo amplifier/driver or the	short
	configuration of mirrors (or other optical	
	components) it is possible that certain application set	
	ups may require the sense of the X and Y axis	
	position demand signals to be inverted. This	
	parameter sets the signal sense and gain for the X	
	axis output as follows:	
	If XPosDemandFBSense is set to '10' (32767) the	
	signals are positive when the beam is in the left hand	
	quadrants of the detector array, and negative when	
	in the right hand quadrants. The gain of the system is set to '1'.	
	If XPosDemandFBSense is set to '-7' (-22938) the	
	signals are positive when the beam is in the right	
	hand quadrants of the detector array, and negative	
	when in the left hand quadrants. The gain of the	
	system is set to '0.7'.	
YPosDemandFBSense	Similarly to the XPosDemandFBSense described	short
	above, this parameter sets the signal sense and gain	
	for the Y axis output as follows:	
	If YPosDemandFBSense is set to '10' (32767) the	
	signals are positive when the beam is in the top	
	quadrants of the detector array, and negative when	
	in the bottom quadrants. The gain of the system is	
	set to '1'.	
	If YPosDemandFBSense is set to '-3' (-9830) the	
	signals are positive when the beam is in the bottom	
	quadrants of the detector array, and negative when	
	in the top quadrants. The gain of the system is set to	
	'0.3'.	

Example: Set the Quad Pos Demand Params

RX 70, 08, 12, 00, D0, 01, 05, 00, 01, 80, 01, 80, FF, 7F, FF, 7F, 02, 00, 01, 00, 0A, 00, 0A, 00

Header: 70, 08, 12, 00, D0, 01: Quad_SetPARAMS, 18 byte data packet, Generic USB Device. SubMsgID: 05, 00: Set Quad PosDemandParams XPosDemandMin:.01, 80: 0x8001 (-32767 decimal), i.e. -10 V. YPosDemandMin:. 01, 80: 0x8001 (-32767 decimal), i.e. -10 V. XPosDemandMax: FF, 7F: 0x7FFF (32767 decimal), i.e. 10 V. YPosDemandMax: FF, 7F: 0x7FFF (32767 decimal), i.e. 10 V. LVOutRoute: 02, 00 i.e. SMA + Hub OpenLoopPosDemand:.01, 00: i.e. Zero. XPosDemandFBSense:. FF, 7F: i.e. Positive sense, gain = 1. YPosDemandFBSense: 9A, D9: i.e. Positive sense, gain = 0.3.

REQUEST:

Command structure (6 bytes):

0	1	4	5						
	header only								
71	08	05	00	d	S				

TX 71, 08, 05, 00, 50, 01,

GET:

Command structure (24 bytes) 6 byte header followed by 18 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header							Da	ıta		
72	08	12	00	d	S	SubMsgID XPosDemMin			YPosDemMin		
12	13	14	15	16	17	18	19	20	21	22	23
	Data										
XPosDe	emMax	YPosDe	emMax	LVOut	Route	OLPosDem XPosFBSense		YPosFl	3Sense		

See Set message for structure

Set/Request/Get Quad_OperMode (sub-message ID = 07)

Used to set the operating mode of the control unit to either Monitor, Open Loop or Closed Loop mode as described below.

SET:

Command structure (14 bytes)

6 byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
	header						Do	nta	
70	08	08	00	d	S	SubMsgID Mode			ode

Data Structure:

The message ID (i.e. 0700) of the message containing the parameters	word
The operating mode of the unit. When operating in 'Monitor' mode, the X axis (XDIFF) and Y axis (YDIFF) difference signals from the detector, are fed through to the rear panel SMA connectors for use in a monitoring application. When in 'Open Loop' mode, the signals at the rear panel are fixed at zero (0V), or held at the last closed loop value, depending on the setting of the 'OpenLoopPosDemands parameter in the <u>QuadPosDemandParams</u> message. This is useful when the system is being adjusted manually, to position the light beam within the detector array. In 'Closed Loop' mode, the feedback circuit sends position demand signals to the rear panel XDIFF and YDIFF connectors, which can be used to drive a pair of positioning elements (e.g. piezo drivers) in order to position the light beam within the center of the detector array. The mode is set as follows: 1 Monitor Mode 2 OpenLoop 3 ClosedLoop	word
The following mode is applicable only to the KPA101 K-Cube Position Aligner 4 Auto Open/Closed Loop Mode: the unit operates in closed loop' mode, until the SUM signal falls below the value set in the SumMin parameter of the Set/Request/Get	
	The operating mode of the unit.When operating in 'Monitor' mode, the X axis (XDIFF) and Yaxis (YDIFF) difference signals from the detector, are fedthrough to the rear panel SMA connectors for use in amonitoring application.When in 'Open Loop' mode, the signals at the rear panel arefixed at zero (OV), or held at the last closed loop value,depending on the setting of the 'OpenLoopPosDemandsparameter in the QuadPosDemandParamsmessage. This isuseful when the system is being adjusted manually, toposition the light beam within the detector array.In 'Closed Loop' mode, the feedback circuit sends positiondemand signals to the rear panel XDIFF and YDIFFconnectors, which can be used to drive a pair of positioningelements (e.g. piezo drivers) in order to position the lightbeam within the center of the detector array.The mode is set as follows:11Monitor Mode2223ClosedLoop3ClosedLoop4Auto Open/Closed Loop Mode:the unit operates in closed loop' mode, until theSUM signal falls below the value set in the SumMin

A Note About Automatic Open Loop/Closed Loop Switching

The KPA101 controller is capable of switching automatically between open loop and closed loop operating modes, depending on whether there is sufficient optical power required for

closed loop operation. Automatic Switching mode can be selected by setting the Mode parameter to 4_AUTOOPENCLOSEDLOOP as described above.

If during closed loop operation the SUM signal falls below the minimum specified in the SumMin parameter of the Set/Request/Get Quad_KPATRIGIOCONFIG method, the controller will switch back to open loop mode. If subsequently the SUM signal rises above the limit again, the controller will switch back to closed loop mode.

The automatic switchover works in conjunction with the "Position Demands In Open Loop Mode" option in the SetQuad_PosDemandParams submessage, that defines whether the controller will hold (freeze) the XPOS and YPOS outputs when switching over to open loop or set them to zero.

Automatic switchover might be advantageous in scenarios where the beam might be temporarily blocked, for example during experiments involving manual manipulation of optical components, particularly when the beam path is quite long and the beam steering actuator can deflect the beam so far that it falls outside the sensor area. In setups like this and with the controller in closed loop, blocking the beam can result in the feedback loop ramping the XPOS and/or YPOS outputs to saturation and steering the beam completely outside the sensor area. When this happens, restoring the beam will not normally restore the beam alignment as at this point the feedback algorithm does not even see the beam. However, with automatic switchover the loss of light will stop the closed loop operation, optionally freeze the last valid beam position and prevent the outputs ramping up as an unintentional consequence of the loss of feedback signals. Later when the beam is restored, closed loop operation will resume and continue control starting from the last valid beam position.

Note that because automatic switchover assumes the knowledge of the last valid closed loop beam position that is lost when the controller is powered down, this option cannot be persisted. For a similar reason, the controller will always power up in open loop mode. Example: Set the operating mode to closed loop

TX 70, 08, 04, 00, D0, 01, 07, 00, 03, 00,

Header: 70, 08, 04, 00, D0, 01: Quad_SetPARAMS, 04 byte data packet, Generic USB Device. *SubMsgID: 07, 00*: SetQuadOperMode *Mode: 03, 00,:* Set closed loop mode

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5			
header only								
71	08	Msg Ident	00	d	S			

GET:

6 byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
	header							nta	
70	08	08	00	d	S	SubMsgID Mode			ode

For structure see Set message above.

Request/Get Quad_Status Bits (sub-message ID = 9)

This sub command can be used to request the control unit status bits. The message only has a request/get part.

REQUEST:

Command structure (6 bytes):

0	1	1 2 3 4						
header only								
71	08	09	00	d	S			

TX 71, 08, 09, 00, 50, 01,

GET:

Status update messages are received with the following format:-

Response structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder			Data					
72	08	06	00	d	S	SubN	/IsgID	StatusBits			

Data Structure:

field	description	format
MsgID	The message ID (0900) of the message containing the	word
	parameters	
StatusBits	The individual bits (flags) of the 32 bit integer value are	dword
	described in the following table.	

TQD001 or TPA101 controller

Hex Value	Bit Number	Description
0x0000001	1	Position Monitoring Mode (1 - enabled, 0 - disabled).
0x0000002	2	Open Loop Operating Mode (1 - enabled, 0 – disabled)
0x0000004	3	Closed Loop Operating Mode (1 - enabled, 0 – disabled)
0x0000008	4 to 32	For Future Use

Example

RX 72, 08, 06, 00, D0, 50, 09, 00, 2B, 00, 00, 00

Header: 02, 08, 06, 00, D0, 50: Quad_Get_Params, 06 byte data packet, Generic USB Device. *MsgID: 09, 00*: Get Status Bits

StatusBits: 04,00,00,00, i.e. 100 Closed Loop operating mode is enabled.

Set/Request/Get Quad Display Settings (sub-message ID = 0B)

This message can be used to adjust or read the front panel LED display brightness and the display units.

SET:

Command structure (14 bytes) 6 byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13
	header					Data							
70	08	08	00	d	S	SubMsgID		DispInt	tensity	Disp	Лode	DispDir	nTimeout

field	description	format
MsgID	The message ID (i.e. 0B00) of the message containing the parameters	word
DispIntensity	The intensity is set as a value from 0 (Off) to 255 (brightest).	word
DispMode	The main display on the GUI panel can be set to show X and Y axis difference signals from the detector array (Difference) or the Xpos and Ypos position demand output signals fed to the positioning elements (Position) as follows: 1 QUAD_DISPMODE_DIFF, the display represents the X and Y axis difference signals from the detector (i.e. the voltage outputs from the rear panel SMA connectors in Monitor Mode). 2 QUAD_DISPMODE_POS, the display represents the position of the XPos and YPos position demand output signals fed to the positioning elements (i.e. the voltage outputs from the rear panel SMA connectors in OPEN or CLOSED loop mode).	word
DispDimTimeout	'Burn In' of the display can occur if it remains static for a long time. To prevent this, the display is automatically dimmed after a specified time interval has elapsed. The brightness level after dimming is set as a percentage of full brightness, from 0 (Off) to 10 (brightest). The values are passed in the form (512 x DimLevel) + Timeout – see example below.	word

Example: Set the display to max brightness, the display mode to Difference, the timeout to 10 minutes and the dim level to 5.

TX 70, 08, 08, 00, D0, 01, 0B, 00, FF, 00, 01, 00, 0A, 0A

Header: 70, 08, 08, 00, D0, 01: Quad_SetParams, 08 byte data packet, Generic USB Device.
SubMsgID: 0B, 00: Set Display Settings
DispIntensity: FF, 00: Sets the display brightness to 255 (100%)
DispMode: 01, 00: Sets the display mode to option 1, i.e. Difference
DispDimTimeout: 0A, 0A: Sets the DispDimTimeout parameter to 2570, which equates to a 2570/512 = 5, with a timeout of 10 minutes

REQ: Command structure (6 bytes):

0	1	2	3	4	5					
	header only									
71 08 0B 00 d s										

Example:

TX 71, 08, 0B, 00, 50, 01

GET:

Command structure (14 bytes) 6 byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13
	header					Data							
72	08	08	00	d	S	SubMsgID		DispIn	tensity	Disp	Лode	DispDir	nTimeout

See SET for data structure.

Set/Request/Get Quad_PositionOutputs (sub-message ID = 0D)

This sub message can be used to set and get the position demand signals (on the XDIFF, YDIFF connectors).

When the quad detector unit is used with a beam steering device (e.g. a piezo mirror via piezo drivers), this message allows the beam to be positioned by entering a value (-10 V to +10V) in the XPos and YPos parameters.

SET:

Status update messages are received with the following format:-

Response structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
	header						Data					
70	70 08 06 00 d s					SubN	/IsgID	XP	OS	YP	OS	

Data Structure:

field	description	format
MsgID	The message ID (i.e. 0D00) of the message containing the	word
	parameters	
XPos	The X axis position output value -10 V to 10 V (i.e32768 to 32767)	short
YPos	The Y axis position output value -10 V to 10 V (i.e32768 to 32767)	short

Example Set the XPos and YPos signals to be -10 V and 10V respectively.

TX 70, 08, 06, 00, D0, 01, 0D, 00, 01, 80, FF, 7F

Header: 70, 08, 06, 00, D0, 01: Quad_Get_Params, 06 byte data packet, Generic USB Device. *MsgID: 0D, 00*: Get Quad_PositionOutputs *XPos*:. 01, 80: 0x8001 (-32767 decimal), i.e. -10 V. *YPos*: FF, 7F: 0x7FFF (32767 decimal), i.e. 10 V.

REQUEST: Command structure (6 bytes):

0	1	2	3	4	5					
	header only									
71	08	0D	00	d	S					

TX 71, 08, 0D, 00, 50, 01,

GET:

Status update messages are received with the following format:-

Response structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
	header						Data					
72	72 08 06 00 dl s					SubN	/IsgID	XP	OS	YP	os	

Set/Request/Get Quad_LoopParams2 (sub-message ID = 0E)

This sub-message is applicable only to the TPA101 and KPA101 units.

Used to set the proportional, integration and derivative feedback loop constants and also to set the derivative cut off frequency and the notch filter center frequency.

PID Constants: The PID constants apply when the unit is operated in closed loop mode, and position demand signals are generated at the rear panel SMA connectors by the feedback loops. These position demand voltages act to move the beam steering elements (e.g. a piezo driven mirror) in order to centralize a beam at the centre of the PSD head. When operating in closed loop mode, the proportional, integral and derivative (PID) constants can be used to fine tune the behaviour of the dual feedback loops to adjust the response of the position demand output voltages. The feedback loop parameters need to be adjusted to suit the different types of sensor that can be connected to the system. The default values have been optimized for the PDQ80A sensor.

Derivative Filter: The output of the derivative part of the PID controller can be passed through a tuneable low pass filter. Whilst the derivative component of the PID loop often improves stability (as it acts as a retaining force against abrupt changes in the system), it is prone to amplifying noise present in the system, as the derivative component is sensitive to changes between adjacent samples. To reduce this effect, a low pass filter can be applied to the samples. As noise often tends to contain predominantly high frequency components, the low pass filter can significantly decrease their contribution, often without diminishing the beneficial, stabilizing effect of the derivative action. In some applications enabling this filter can improve the overall closed loop performance.

Notch Filter: Due to their construction, most actuators are prone to mechanical resonance at well-defined frequencies. The underlying reason is that all spring-mass systems are natural harmonic oscillators. This proneness to resonance can be a problem in closed loop systems because, coupled with the effect of the feedback, it can result in oscillations. With some actuators (for example the ASM003), the resonance peak is either weak enough or at a high enough frequency for the resonance not to be troublesome. With other actuators (for example the PGM100) the resonance peak is very significant and needs to be eliminated for operation in a stable closed loop system. The notch filter is an adjustable electronic antiresonance that can be used to counteract the natural resonance of the mechanical system. As the resonance frequency of actuators varies with load in addition to the minor variations from product to product, the notch filter is tuneable so that its characteristics can be adjusted to match those of the actuator. In addition to its centre frequency, the bandwidth of the notch (or the equivalent quality factor, often referred to as the Q-factor) can also be adjusted. In simple terms, the Q factor is the centre frequency/bandwidth, and defines how wide the notch is, a higher Q factor defining a narrower ("higher quality") notch. Optimizing the Q factor requires some experimentation but in general a value of 5 to 10 is in most cases a good starting point.

SET:

Command structure (36 bytes)

6 byte header followed by 30 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	1	Z	5	4	5	0	/	0	9	12	15		
	header								Da	ıta			
70	08	1E	00	d	S	SubN	/IsgID		PIDCo	onstsP		PIDCo	onstsl
14	15	16	17	18	19	20	21	22	23	24	25	26	27
	Data												
PIDC	onstsl		PIDCo	nstsD			PIDCor	nstsDFc			Filte	erFc	
28	29	30	31	32	33	34	3	5					
				Data									
	FilterQ NotchFilterOn					PIDD	erivFilter	On					

field	description	format
SubMsgID	The message ID (i.e. 0E,00) of the message containing the	word
	parameters	
PIDConstsP	The proportional gain. This term provides the force used	float
	to drive the piezo to the demand position, reducing the	
	positional error. Together with the Integral and	
	Derivative, these terms determine the system response	
	characteristics and accept values in the range 0 to 10000.	
PIDConstsI	The integral gain. This term provides the 'restoring' force	float
	that grows with time, ensuring that the positional error is	
	eventually reduced to zero. Together with the	
	Proportional and Derivative, these terms determine the	
	system response characteristics and accept values in the	
	range 0 to 10000.	
PIDConstsD	The derivative gain. This term provides the 'damping'	float
	force proportional to the rate of change of the position.	
	Together with the Proportional and Integral, these terms	
	determine the system response characteristics and accept	
	values in the range 0 to 10000.	
PIDConstsDFc	The cut off frequency of the Derivative Low Pass Filter, in	float
	the range 0 to 10,000	
FilterFc	The Notch Filter center frequency, in the range 0 to	float
	10,000	
FilterQ	The Notch Filter Q factor, in the range 0.1 to 100	float
NotchFilterOn	Turns the notch filter on (set to 1) and off (set to 2)	word
PIDDerivFilterOn	Turns the derivative filter on (set to 1) and off (set to 2)	word

Example: Set the PID parameters for TPA101 as follows: Proportional: 65.7 Integral: 80.3 Derivative: 60.9 Derivative LP Cutoff: 500 Hz Notch Filter Center Freq: 500Hz Q Factor: 5.0 Notch Filter ON Derivative Filter ON

TX 70, 08, 1E, 00, D0, 01, 0E, 00, 66, 66, 83, 42, 9A, 99, A0, 42, 9A, 99, 73, 42, 00, 00, FA, 43, 00, 00, FA, 43, 00, 00, A0, 40, 01, 00, 01, 00

Header: 70, 08, 1E, 00, D0, 01: Quad_SetParams, 30 byte data packet, Generic USB Device.
SubMsgID: 0E, 00 SetQuadControlLoopParams2)
Prop: 66, 66, 83, 42: Set the proportional term to 65.7
Int: 9A, 99, A0, 42: Set the integral term to 80.3
Deriv: 9A, 99, 73, 42: Set the derivative term to 60.9
Derivative LP Cut Off: 00, 00, FA, 43: Set the low pass cut off frequency to 500 Hz
Notch Filter Center: 00, 00, FA, 43: Set the notch filter center frequency to 500 Hz
Q Factor: 00, 00, A0, 40: Set the Q factor to 5.0
Notch Filter ON: 01, 00: Set the notch filter ON
Derivative Filter ON: 01, 00: Set the low pas filter ON.

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5					
	header only									
71 08 01 00 d s										

GET:

6 byte header followed by 30 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13
		hea	ıder						Da	ıta			
72	08	1E	00	d	S	SubN	1sgID		PIDCo	onstsP		PIDC	onstsl
14	15	16	17	18	19	20	21	22	23	24	25	26	27
						Da	ta						
PIDCo	onstsl		PIDCo	nstsD			PIDConstsDFc FilterFc						
28	28 29 30 31 32 33						3	5					
				Data									
	FilterQ NotchFilterOr					PIDDe	erivFilte	rOn					

For structure see Set message above.

Set/Request/Get Quad_KPATRIGIOCONFIG (sub-message ID = 0F)

This sub-message is applicable only to KPA101 units.

Used to set the operating parameters of the trigger connectors on the front panel of the unit.

The K-Cube position aligner has two bidirectional trigger ports (TRIG1 and TRIG2) that can be independently configured either as an input or an output and assigned a function from the list of options described in the following section. The polarity (logic HIGH / LOW or rising / falling edge) can also be configured to suit the requirements of the equipment connected to these ports.

In the input operating modes the port is electrically configured as a TTL compatible logic input. When the port is driven with a voltage level below +0.8 V, it will read a logic LOW and when driven above +2.4V, it will read a logic HIGH. The ports have an internal weak pull-up resistor ensuring that a stable logic level is present on the inputs even when there is no driving source connected to it. This means that when unconnected the ports will read a logic HIGH. The internal pull-up also allows the direct connection of mechanical switches or other unpowered control devices.

In the output modes the port is electrically configured as a logic output using 5 Volt logic levels. The port is connected to the output driver logic with a 620 Ohm resistor in series; this resistor limits the maximum output current to approximately 8 mA and provides protection against the output being accidental short circuited to ground. The output can be used to drive the majority of digital inputs used on external equipment without any additional circuitry.

Warning: do not drive the TRIG ports from any voltage source that can produce an output in excess of the normal 0 to 5 Volt logic level range. In any case the voltage at the TRIG ports must be limited to -0.25 to +5.25 Volts.

Trigger Modes

Input Trigger Modes

0x00 TRIG_DISABLED - The trigger IO is disabled. Selecting this option effectively results in the port returning to its default digital input configuration

0x01 TRIGIN_GPI - General purpose logic input. Other than being able to read the logic state of port there is no other functionality associated with it. The state of the port is returned in the periodic status update messages, or can be read by using the Get_Quad_Status Bits submessage). In this mode the Triggering Polarity setting has no effect; the logic state of the input is returned as it is present on the port without inversion.

0x02 TRIGIN_LOOPOPENCLOSE - In this mode the port can be used to toggle the operating mode of the controller between open loop and closed loop modes. If the trigger polarity is selected to be "Active High", the operating mode toggles on the rising edge (LOW to HIGH transition) of the signal present on the TRIG input. Conversely, with "Active Low", the toggle takes place on the falling edge (HIGH to LOW transition).

Output Trigger Modes

0x0A TRIGOUT_GPO - In this operating mode the TRIG port functions as a simple digital output. The logic state of the output can be set using the MOD_SET_DIGOUTPUTS message. Other than being able to read the logic state of port there is no other functionality

associated with it. The logic state of the output can be inverted by setting the Triggering Polarity parameter to "Low"; with this option selected the state of the output will be the opposite of the corresponding bit setting in the software call. The default state of the output in this mode is also the opposite of the option selected as the Triggering Polarity.

0x0B TRIGOUT_SUM - The state of the TRIG port is asserted depending on whether the SUM signal coming from the position sensor is inside the limits specified in the lSumMin and ISumMax parameters. If SUM is within the limits, the state will be the logic state selected in Triggering Polarity and conversely if it falls outside these limits, it will assume the opposite logic state. This mode can be used to detect the presence or absence of light falling on the position sensor; or that the optical power is within the expected limits. This option might be useful to signal a condition required for normal operation as under normal operating conditions the optical power is often expected to remain fairly constant. The ISumMin and ISumMax parameters are specified as a percentage of full scale, in the range 1% to 99%.

0x0C TRIGOUT_DIFF - The state of the TRIG port is asserted depending on whether both the XDIFF and the YDIFF signals coming from the position sensor are below the value set in the IDiffThreshold parameter. If both XDIFF and YDIFF are below the limit, the state will be the logic state selected in Triggering Polarity and conversely if either of them falls outside these limits, it will assume the opposite logic state. This mode can be used to signal whether or not the beam is close to the centre (beam aligned) position within a certain margin. In closed loop mode it also indicates that the controller is capable of tracking the changes in the beam position and maintain beam alignment. The IDiffThreshold parameter is specified as a percentage of full scale, in the range 1% to 99%.

0x0D TRIGOUT_SUMDIFF - This output mode is a 'logic AND' combination of the "Inside SUM range" and "Below Diff Threshold" conditions described above. Having to meet both conditions provides a more reliable indication of the normal closed loop operation when the beam is aligned and in the centre of the position sensor. In this scenario the SUM signal is within the expected limits (there is sufficient amount of light hitting the sensor) and both XDIFF and YDIFF are below a certain threshold (the beam is centralized). The second part of the condition, XDIFF and YDIFF below the threshold can also occur if the beam is blocked.

Trigger Polarity

The polarity of the trigger pulse is specified in the ITrigPolarity parameters as follows:

0x01 The active state of the trigger port is logic HIGH 5V (trigger input and output on a rising edge).

0x02 The active state of the trigger port is logic LOW 0V (trigger input and output on a falling edge).

SET

Command structure (34 bytes)

6 byte header followed by 28 byte data packet.

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder								
70	08	0C	00	d	S	SubN	/IsgID	Trig1	Mode	Trig1P	olarity
12	13	14	15	16	17	18	19	20	21	22	23
					Da	ita					
Trig1S	umMin	Trig1Su	umMax	Trig1Di	ffThold	Trig2	Mode	Trig2P	olarity	Trig2S	umMin
24	25	26	27	28	29	30	31	32	33]	
Data									1		
Trig2Su	umMax	nMax Trig2DiffThold				Rese	erved]	

Data Structure:

field	description	format
SubMsgID	The message ID (i.e. 0F,00) of the message containing	word
	the parameters	
Trig1Mode	TRIG1 operating mode:	word
Trig1Polarity	The active state of TRIG1 (i.e. logic high or logic low) .	word
Trig1SumMin	The lower limit when the trigger mode is set to TRIGOUT_SUM	word
Trig1SumMax	The upper limit when the trigger mode is set to TRIGOUT_SUM	word
Trig1DiffThreshold	The threshold when the trigger mode is set to TRIGOUT_DIFF	word
Trig2Mode	TRIG1 operating mode	word
Trig2Polarity	The active state of TRIG2 (i.e. logic high or logic low).	word
Trig2SumMin	The lower limit when the trigger mode is set to TRIGOUT_SUM	word
Trig2SumMax	The upper limit when the trigger mode is set to TRIGOUT_SUM	word
Trig2DiffThreshold	The threshold when the trigger mode is set to TRIGOUT_DIFF	word
Reserved		

Example: Set the Trigger parameters for KPA101 as follows: Trig1Mode – TrigOut_SUM Trig1Polarity – High Trig1SumMin – 10% Trig1SumMax – 5% Trig1DiffThreshold – 0 Trig2Mode – Disabled Trig2Polarity – N/A Trig2SumMin – 0 Trig2SumMax – 0 Trig2DiffThreshold - 0 Header: 70, 08, 1A, 00, D0, 01: Quad_SetParams, 30 byte data packet, Generic USB Device. SubMsgID: 0F, 00 SetKPATrigIOConfig) Trig1Mode – 0B, 00 TrigOut_SUM Trig1Polarity – 01, 00 High Trig1SumMin – 0A, 00 10% Trig1SumMax –05, 00 5% Trig1DiffThreshold – 0 Trig2Mode – Disabled Trig2Polarity – N/A Trig2SumMin – 0 Trig2SumMax – 0 Trig2DiffThreshold - 0

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5					
	header only									
71 08 0F 00 d s										

GET:

Response structure (34 bytes): 6 byte header followed by 28 byte data packet.

0	1	2	2	4	_	C	7	0	0	10	11
0	1	2	3	4	5	6	/	8	9	10	11
		hea	ıder					Da	ata		
72	08	0C	00	d	S	SubN	/IsgID	Trig1	Mode	Trig1P	olarity
12	13	14	15	16	17	18	19	20	21	22	23
					Da	ata					
Trig1S	umMin	Trig1Su	umMax	Trig1Di	ffThold	Trig2	Mode	Trig2P	olarity	Trig2Su	umMin
										_	
24	25	26	27	28	29	30	31	32	33		
				Da	nta						
Trig2Su	Trig2SumMax Trig2DiffThold		Reserved								

For structure see SET message above.

Set/Request/Get Quad_KPADigOutputs (sub-message ID = 10)

This sub-message is applicable only to KPA101 units.

Used to set the digital outputs of the KPA101 unit, if the trigger port is to be used as a general purpose digital output (i.e. trigger mode set to 0x0A TRIGOUT_GPO). The logic state of the output can be inverted by setting the Triggering Polarity parameter to "Low"; with this option selected the state of the output will be the opposite of the corresponding bit setting in the software call. The default state of the output in this mode is also the opposite of the option selected as the Triggering Polarity.

SET

Command structure (12bytes)

6 byte header followed by 6 byte data packet.

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder			Data					
71	08	06	00	d	S	SubMsgID DigOPs			OPs	Rese	rved

Data Structure:

field	description	format
SubMsgID	The message ID (i.e. 0F,00) of the message containing	word
	the parameters	
DigOPs	The status of the digital outputs. The lowest two bits	word
	relate to TRIG1 and TRIG2	
Reserved		

Example: Set the both Trig Outputs to ON:

TX 70, 08, 06, 00, D0, 01, 10, 00, 11, 00, 00, 00,

Header: 70, 08, 06, 00, D0, 01: Quad_SetParams, 6 byte data packet, Generic USB Device. *SubMsgID: 10, 00* SetKPATrigIOConfig) *DigOPs* – 11, 00 Trig1 and Trig2 outputs set to ON (High).

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5				
header only									
71	08	01	00	d	S				

GET:

Response structure (12 bytes): 6 byte header followed by 6 byte data packet.

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder			Data					
71	08	0C	00	d	S	SubMsgID DigOPs Re				Rese	rved

For structure see SET message above.

MGMSG_QUAD_REQ_STATUSUPDATE MGMSG_QUAD_GET_STATUSUPDATE

0x0880 0x0881

Function:This function is used in applications where spontaneous status
messages (i.e. messages sent using the START_STATUSUPDATES
command) must be avoided.
Status update messages contain information about the position and
status of the controller (for example position and O/P voltage). The
response will be sent by the controller each time the function is
requested.

REQUEST: Command structure (6 bytes):

0	1	2	3	4	5				
header only									
80	08	00	00	d	S				

GET:

Status update messages are received with the following format:-

Response structure (20 bytes)

6 byte header followed by 14 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13
	header						Data						
81	08	OE	00	d	S	XDiff		YD	iff	Su	ım	XF	os

14	14 15		16 17 18							
	header only									
YF	os		Status	s Bits						

field	description	format
XDiff	The present X axis difference (XDIFF) signal from the	short
	detector head. (-10V to 10V in the range -32768 to 32767)	
YDiff	The present Y axis difference (XDIFF) signal from the	short
	detector head. (-10V to 10V in the range -32768 to 32767)	
Sum	The present Sum signal value from the detector head	word
	(0V to 10V in the range 0 to 65535)	
XPos	The X axis position output value -10 V to 10 V (i.e32768 to 32767)	short
YPos	The Y axis position output value -10 V to 10 V (i.e32768 to 32767)	short
StatusBits	The individual bits (flags) of the 32 bit integer value are described in the following table	dword

Hex Value	Bit Number	Description
0x0000001	1	Position Monitoring Mode (1 - enabled, 0 - disabled).
0x0000002	2	Open Loop Operating Mode (1 - enabled, 0 – disabled)
0x0000004	3	Closed Loop Operating Mode (1 - enabled, 0 – disabled)
0x0000008	4 to 32	For Future Use

TQD001 or TPA101 controller Status Bits

Example

RX 81, 08, 0E, 00, 81, 50, FF, 3F, FF, 3F, FF, 7F, 00, 00, 00, 00

Header: 81, 08, 0E, 00, 81, 50: QUAD_Get_StatusUpdate, 14 byte data packet, Generic USB Device.
XDiff:.FF, 3F: 0x3FFF (16383 decimal), i.e. 5 V.
YDiff:. FF, 3F: 0x3FFF (16383 decimal), i.e. 5 V.
Sum: FF, FF: (65535 decimal), i.e. 10 V.
XPos: 00, 00 i.e. Zero
YPos: 00, 00 i.e. Zero
StatusBits: 04,00,00,00, i.e. 100 Closed Loop operating mode is enabled.

MGMSG_QUAD_ACK_STATUSUPDATE

0x0882

Only Applicable If Using USB COMMS. Does not apply to RS-232 COMMS

Function:If using the USB port, this message called "server alive" must be sent
by the server to the controller at least once a second or the
controller will stop responding after ~50 commands.
The controller keeps track of the number of "status update" type of
messages (e.g.move complete message) and it if has sent 50 of
these without the server sending a "server alive" message, it will
stop sending any more "status update" messages.
This function is used by the controller to check that the PC/Server
has not crashed or switched off. There is no response.

Structure (6 bytes):

TX 82, 08, 00, 00, 21, 01

MGMSG_QUAD_SET_EEPROMPARAMS

Function: Used to save the parameter settings for the TQD001,TPA101 or KPA101 unit. These settings may have been altered either through the various method calls or through user interaction with the GUI (specifically, by clicking on the 'Settings' button found in the lower right hand corner of the user interface). The settings are saved for the channel specified in the Chan ID parameter

SET:

Command structure (8 bytes) 6 byte header followed by 2 byte data packet as follows:

0	1	2	3	4	5	6	7	
		hea	ıder			Da	nta	
75	08	02	00	d	S	MsgID		

Data Structure:

field	description	format
MsgID	The ID of the message parameters to be saved	word

Example:

TX 75, 08, 02, 00, D0, 01, 81, 08,

Header: 75, 08, 02, 00, D0, 01: Set_EEPROMPARAMS, 02 byte data packet, Generic USB Device.

MsgID: Save parameters specified by message 0881 (GetStatusUpdate).

0x0875

TEC Control Messages

Introduction

The ActiveX functionality for the TEC Controller is accessed via the ThorlabsTEC Control Object, and provides the functionality required for a client application to control a number of T-Cube TEC Controller units.

Every hardware unit is factory programmed with a unique 8-digit serial number. This serial number is key to operation of the Thorlabs Server software and is used by the Server to enumerate and communicate independently with multiple hardware units connected on the same USB bus.

The serial number must be allocated using the HWSerialNum property, before an ActiveX control can communicate with the hardware unit. This can be done at design time or at run time.

The methods of the T-Cube TEC Controller can then be used to perform activities such as switching between display modes, reading the present TEC element temperature, and setting the LED display intensity.

For details on the use of the TEC T-Cube Controller, refer to the handbook supplied for the unit.

MGMSG_TEC_SET_PARAMS MGMSG_TEC_REQ_PARAMS MGMSG TEC GET PARAMS

0x0840 0x0841 0x0842

Function: This generic parameter set/request message is used to control the functionality of the TEC001. The specific parameters to control are identified by the use of sub-messages. These sub messages comply with the general format of the Thorlabs message protocol but rather than having a unique first and second byte in the header carrying the "message identifier" information, the first and second byte remain the same. Instead, for the SET and GET messages, the message identifier is carried in the first two bytes in the data packet part of the message, whilst for the REQ message it is encoded as the third byte of the header. Likewise, when the TEC001 responds, the first two bytes of the response remain the same and the first two bytes of the data packet identify the sub-message to which the information returned in the remaining part of the data packet relates.

The following sub messages are applicable to the TEC001:

Set/Request/Get TEC_TempSetPoint (sub-message ID = 01) Request/Get_TEC_Readings (sub-message ID = 03) Set/Request/Get_IOSettings (sub-message ID = 05) Request/Get_TEC_StatusBits (sub-message ID = 07) Set/Request/Get_TEC_LoopParams (sub-message ID = 09) Set/Request/Get TEC_Disp_Settings (sub-message ID = 0B)

To explain the principle, the following examples describe these messages in more detail.

Set/Request/Get TEC_TempSetPoint (sub-message ID = 01)

Used to set the target temperature of the TEC element associated with the ActiveX control instance.

SET:

Command structure (10 bytes) 6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
	header							nta	
40	08	04	00	d	S	SubMsgID		TS	iet

field	description	format
SubMsgID	The message ID (i.e. 0100) of the message containing the	word
	parameters	
TSet	Used to set the target temperature of the TEC element	word
	associated with the ActiveX control instance.	
	Note. The units in which the temperature is returned are	

dependent upon the 'Sensor Type' selected (via the Settings panel or by calling the SetTempSetPoint submessage). If an IC type sensor is selected, the set point temperature is displayed in °C in the range -4500 to 14500 (45.0° to 145.0°). For a 20 k Ω .thermistor sensor, the set point is displayed in k Ω in the range 0 to 2000 (0 to 20 k Ω). For a 200 k Ω . sensor	
the range is 0 to20000 (0 to 200 k Ω .).	

Example: Set the Temperature Setpoint for TEC001 as follows: TSet: 65 °C

TX 40, 08, 04, 00, D0, 01, 01, 00, 64, 19

Header: 70, 08, 08, 00, D0, 01: TEC_SetTempSetPoint, 4 byte data packet, Generic USB Device.

SubMsgID: 01, 00 SetTempSetPoint TSet: 64, 19, (6500): Set the set point to 65 °C

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5				
	header only								
41	08	01	00	d	S				

GET:

6 byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
		hea	der				Da	nta	
42	08	04	00	d	S	SubMsgID TSe		et	

For structure see Set message above.

Request/Get TEC_Readings (sub-message ID = 3)

This message returns the present readings of the TEC unit as follows:

ITec The TEC output current in mA. (0 to 2000mA in the range -0 to 2000)

TAct The actual temperature of the TEC element associated with the ActiveX control instance.

Note. The units in which the temperature is returned are dependent upon the 'Sensor Type' selected (via the Settings panel or by calling the SetTempSetPoint submessage). If an IC type sensor is selected, the set point temperature is displayed in °C in the range -4500 to 14500 (45.0° to 145.0°). For a 20 k Ω .thermistor sensor, the set point is displayed in k Ω in the range 0 to 2000 (0 to 20 k Ω For a 200 k Ω sensor the range is 0 to20000 (0 to 200 k Ω).

TSet The temperature setpoint of the TEC element associated with the ActiveX control instance.

Note. The units in which the setpoint is returned are dependent upon the 'Sensor Type' selected (via the Settings panel or by calling the SetTempSetPoint submessage). If an IC type sensor is selected, the set point temperature is displayed in °C in the range -4500 to 14500 (45.0° to 145.0°). For a 20 k Ω thermistor sensor, the set point is displayed in k Ω in the range 0 to 2000 (0 to 20 k Ω For a 200 k Ω sensor the range is 0 to20000 (0 to 200 k Ω).

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5				
	header only								
41	08	03	00	d	S				

TX 41, 08, 03, 00, 50, 01,

GET:

Command structure (14 bytes)

6 byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13			
		hea	ıder				Data					<u> </u>				
42	08	08	00	d	S	SubMsgID		IT	ec	TA	vct	TS	et			

field	description	format
SubMsgID	The message ID (i.e. 0300) of the message containing the	word
	parameters	
ITec	Returns the TEC output current in mA. (0 to 2000mA in the	short
	range -0 to 2000)	
TAct	Returns the present temperature of the TEC element	short
	associated with the ActiveX control instance.	
	Note. The units in which the temperature is returned are	
	dependent upon the 'Sensor Type' selected (via the Settings	
	panel or by calling the SetTempSetPoint submessage). If an	
	IC type sensor is selected, the set point temperature is	
	displayed in °C in the range -4500 to 14500 (45.0° to 145.0°).	
	For a 20 k Ω .thermistor sensor, the set point is displayed in	
	$k\Omega$ in the range 0 to 2000 (0 to 20 $k\Omega).$ For a 200 $k\Omega.$ sensor	
	the range is 0 to20000 (0 to 200 k Ω .).	

TSet	Returns the target temperature of the TEC element	word
	associated with the ActiveX control instance.	
	Note. The units in which the temperature is returned are	
	dependent upon the 'Sensor Type' selected (via the Settings	
	panel or by calling the SetTempSetPoint submessage). If an	
	IC type sensor is selected, the set point temperature is	
	displayed in °C in the range -4500 to 14500 (45.0° to 145.0°).	
	For a 20 k Ω .thermistor sensor, the set point is displayed in	
	$k\Omega$ in the range 0 to 2000 (0 to 20 $k\Omega).$ For a 200 $k\Omega.$ sensor	
	the range is 0 to20000 (0 to 200 k Ω .).	

Example: Get the Quad Detector T-Cube readings (T-Cube in open loop mode)

RX 42, 08, 08, 00, D0, 01, 03, 00, E8, 03, DC, 05, 40, 1F,

Header: 42, 08, 08, 00, D0, 01: TEC_GetPARAMS, 8 byte data packet, Generic USB Device. MsgID: 03, 00: Get Quad Readings ITec:.E8, 03: 0x03E8 (1000 decimal), i.e. 1 V. TAct:. DC, 05: 0x05DC (1500 decimal), i.e. 1.5 V. TSet: 40, 1F: 0x1F40 (8000 decimal), i.e. 80 °C.

Set/Request/Get IOSettings (sub-message ID = 5)

This message sets the type of TEC element associated with the ActiveX control instance. If an AD59x transducer is selected, the temperature is set and displayed in °C. If a 20kOhm or 200kOhm thermistor is selected, the temperature is set and displayed in kOhms.

SET:

Command structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
header					Data						
40	08	06	00	d	S	SubN	1sgID	wSensor		sILim	

field	description	format
SubMsgID	The message ID (i.e. 0500) of the message containing	word
	the parameters	
wSensor	This parameter contains constants that specify the type of TEC element controlled by the unit.	word
	0 SENSOR_IC_AD59X TEC element is a AD59x IC type transducer.	
	1 SENSOR_THERM20KOHM TEC element is a 20kOhm thermistor.	
	2 SENSOR_THERM200KOHM TEC element is a 200kOhm thermistor.	
sILim	This parameter returns the maximum current that the TEC controller associated with the ActiveX control instance can source into the TEC element. Values are set in the range 0 to 2000 (0 to 2000 mA).	short

Example: Set the TEC IO Settings as follows

RX 40, 08, 0C, 00, D0, 01, 05, 00, 01, 00, 01, 80

Header: 42, 08, 0C, 00, D0, 01: TEC_SetPARAMS, 6 byte data packet, Generic USB Device. SubMsgID: 05, 00: Set TEC_IOSettings wSensor:.01, 00: 0x0001 i.e. AD59x IC type transducer. sILim:. E8, 03: 0x03E8 (10000 decimal), i.e. 1A.

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5			
header only								
41	08	05	00	d	S			

TX 41, 08, 05, 00, 50, 01,

GET:

Command structure (12 bytes) 6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
	header						Data					
42	08	06	00	d	S	SubN	1sgID	wSensor		sILim		

See Set message for structure
Request/Get TEC_Status Bits (sub-message ID = 7)

This sub command can be used to request the TEC001 status bits. The message only has a request/ get part.

REQUEST:

Command structure (6 bytes):

0 1 2 3 4									
header only									
41 08 07 00 d s									

TX 41, 08, 07, 00, 50, 01,

GET:

Status update messages are received with the following format:-

Response structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder			Data					
42	42 08 06 00 d s					SubN	/IsgID		Statu	sBits	

Data Structure:

field	description	format
MsgID	The message ID (0700) of the message containing the	word
	parameters	
StatusBits	The individual bits (flags) of the 32 bit integer value are	dword
	described in the following table.	

TEC controller Status Bits

Hex Value	Bit Number	Description
0x0000001	1	TEC output enabled state (1 - enabled, 0 - disabled).
	2 to 4	For Future Use
0x0000010	5	Display mode (1 – TAct, 0 - else).
0x0000020	6	Display mode (1 – TSet, 0 - else).
0x00000040	7	Display mode (1 – TDelta, 0 - else).
0x0000080	8	Display mode (1 – ITec, 0 - else).
	9 to 30	For Future Use
0x40000000	31	Error
0x80000000	32	For Future Use

Example

RX 42, 08, 06, 00, 81, 50, E8, 03, DC, 05, 40, 1F, 11, 00, 00, 00

Header: 42, 08, 06, 00, 81, 50: TEC_SetParams, 6 byte data packet, Generic USB Device. *SubMsgID: 07, 00*: Set TEC_StatusBits

StatusBits: 11,00,00,00, 0X00000011 (17 decimal) i.e. TEC is enabled with Tact display mode selected. No errors.

Set/Request/Get TEC_LoopParams (sub-message ID = 9)

Used to set the proportional, integration and derivative feedback loop constants to the value specified in the PGain, IGain and DGain parameters respectively. They apply when the TEC unit is operated in closed loop mode, and demand signals are generated at the rear panel connectors by the feedback loops. These demand signals act to drive the heating element to the temperature required.

When operating in closed loop mode, the proportional, integral and derivative (PID) constants can be used to fine tune the behaviour of the dual feedback loops to adjust the response of the temperature demand output current. The feedback loop parameters need to be adjusted to suit the different types of sensor that can be connected to the system.

SET:

Command structure (14 bytes)

6 byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13
header						Data							
70	08	08	00	d	S	SubMsgID PGain				IG	ain	DG	ain
Data Si	ata Structura:												

Data	Structure:
------	------------

field	description	format
SubMsgID	The message ID (i.e. 09,00) of the message containing the parameters	word
PGain	The proportional gain. This term provides the force used to drive the output to the demand set point, reducing the positional error. Together with the Integral and Derivative, these terms determine the system response characteristics and accept values in the range 1 to 100 (i.e. 1 to 100 in Thorlabs User GUI).	word
lGain	The integral gain. This term provides the 'restoring' force that grows with time, ensuring that the set point error is eventually reduced to zero. Together with the Proportional and Derivative, these terms determine the system response characteristics and accept values in the range 0 to 100 (i.e. 0 to 100 in Thorlabs User GUI).	word
DGain	The derivative gain. This term provides the 'damping' force proportional to the rate of change of the temperature. Together with the Proportional and Integral, these terms determine the system response characteristics and accept values in the range 0 to 100 (i.e. 0 to 100 in Thorlabs User GUI).	word

Example: Set the PID parameters for TEC001 as follows: Proportional: 65 Integral: 80 Derivative: 60

TX 40, 08, 08, 00, D0, 01, 09, 00, 41, 00, 50, 00, 3C, 00,

Header: 40, 08, 08, 00, D0, 01: TEC_SetParams, 8 byte data packet, Generic USB Device.

SubMsgID: 09, 00 Set_TECLoopParams) *PGain: 41, 00:* Set the proportional term to 65 *IGain: 50, 00: (32767x80/100)*: Set the integral term to 80 *DGain:* 3C, 00: (*32767x60/100*): Set the derivative term to 60

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5					
	header only									
41 08 09 00 d s										

GET:

6 byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13		
		hea	der			Data									
72	08	08	00	d	S	SubMsgID		PG	ain	IGain		DGain			

For structure see Set message above.

Set/Request/Get TEC Display Settings (sub-message ID = 0B)

This message can be used to adjust or read the front panel LED display brightness and the display units.

SET:

Command structure (14 bytes) 6 byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13
		hea	ıder					Data					
40	08	08	00	d	S	SubN	1sgID	DispIn	tensity	Displ	Лode	Unu	sed

Data Structure:

field	description	format
MsgID	The message ID (i.e. 0B00) of the message containing the	word
	parameters	
DispIntensity	The intensity is set as a value from 0 (Off) to 255 (brightest).	word
DispMode	 The LED display window on the front of the unit can be set to display four different values; the actual temperature of the TEC element (TAct), the difference between the actual temperature and the set point (TDelta), the applied current (ITec), or the demanded set point value (TSet). D DISPMODE_TACT the display shows the actual temperature of the TEC element D DISPMODE_TSET the display shows the demanded set point value. D DISPMODE_DELTA the display shows the difference between the actual temperature (TAct) and the set point temperature (TSet). D SPMODE_DELTA the display shows the difference between the actual temperature (TAct) and the set point temperature (TSet). D SPMODE_ITEC the display shows the current (in the temperature temperature). 	word
	Amps) sourced into the TEC element by the controller.	
Reserved	N/A	word

Example: Set the display to max brightness and the display mode to TAct

TX 40, 08, 08, 00, D0, 01, 0B, 00, FF, 00, 01, 00, 00, 00

Header: 40, 08, 08, 00, D0, 01: TEC_SetParams, 08 byte data packet, Generic USB Device.SubMsgID:0B, 00: Set Display SettingsDispIntensity:FF, 00: Sets the display brightness to 255 (100%)DispMode:01, 00 Sets the display to show the actual temperature of the TEC element.

REQ:

Command structure (6 bytes):

0	0 1 2 3 4									
	header only									
41 08 0B 00 d s										

Example: TX 41, 08, 0B, 00, 50, 01

GET:

Command structure (14 bytes) 6 byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13
		hea	der			Data							
42	08	08	00	d	S	SubN	SubMsgID DispInten		tensity	Disp	Лode	Unu	ised

See SET for data structure.

MGMSG_TEC_SET_EEPROMPARAMS

Function: Used to save the parameter settings for the TEC001 unit. These settings may have been altered either through the various method calls or through user interaction with the GUI (specifically, by clicking on the 'Settings' button found in the lower right hand corner of the user interface).

SET:

Command structure (8 bytes) 6 byte header followed by 2 byte data packet as follows:

0	1	2	3	4	5	6	7	
		Do	nta					
50	50 08 02 00 d s							

Data Structure:

field	description	format
SubMsgID	For future use	word

Example:

TX 75, 08, 02, 00, D0, 01, 00, 00,

Header: E7, 07, 04, 00, D0, 01: Set_EEPROMPARAMS, 02 byte data packet, Generic USB Device.

0x0850

MGMSG_TEC_REQ_STATUSUPDATE MGMSG_TEC_GET_STATUSUPDATE

0x0860 0x0861

Function:This function is used in applications where spontaneous status
messages (i.e. messages sent using the START_STATUSUPDATES
command) must be avoided.

Status update messages contain information about the output current and actual temperature of the transducer. The response will be sent by the controller each time the function is requested.

REQUEST: Command structure (6 bytes):

0	1	2	3	4	5				
	header only								
60 08 00 00 d s									

GET:

Status update messages are received with the following format:-

Response structure (16 bytes)

6 byte header followed by 10 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder			Data					
61	08	OE	00	d	S	ITec TAct TSet			et		

12 13 14 15							
header only							
Status Bits							

Data Structure:

field	description	format
ITec	The TEC output current in mA. (0 to 2000mA in the range -0 to 2000)	short
TAct	The actual temperature of the TEC element associated with the ActiveX control instance. Note. The units in which the temperature is returned are dependent upon the 'Sensor Type' selected (via the Settings panel or by calling the SetTempSetPoint submessage). If an IC type sensor is selected, the set point temperature is displayed in °C in the range -4500 to 14500 (45.0° to 145.0°). For a 20 k Ω .thermistor sensor, the set point is displayed in k Ω in the range 0 to 2000 (0 to 20 k Ω). For a 200 k Ω . sensor the range is 0 to20000 (0 to 200 k Ω .).	short
TSet	The temperature setpoint of the TEC element associated with the ActiveX control instance. Note. The units in which the setpoint is returned are dependent upon the 'Sensor Type' selected (via the Settings panel or by calling the SetTempSetPoint submessage). If an IC type sensor is selected, the set point temperature is displayed in °C in the range -4500 to 14500 (45.0° to 145.0°).	word

	For a 20 k Ω .thermistor sensor, the set point is displayed in k Ω in the range 0 to 2000 (0 to 20 k Ω). For a 200 k Ω . sensor the range is 0 to20000 (0 to 200 k Ω .).	
StatusBits	The individual bits (flags) of the 32 bit integer value are described in the following table	dword

TEC controller Status Bits

Hex Value	Bit Number	Description	
0x0000001	1	TEC output enabled state (1 - enabled, 0 - disabled).	
	2 to 4 For Future Use		
0x0000010	5	Display mode (1 – TAct, 0 - else).	
0x0000020	6	Display mode (1 – TSet, 0 - else).	
0x00000040	7	Display mode (1 – TDelta, 0 - else).	
0x0000080	8	Display mode (1 – ITec, 0 - else).	
	9 to 30	For Future Use	
0x4000000	31	Error	
0x80000000	32	For Future Use	

Example

RX 61, 08, 0A, 00, 81, 50, E8, 03, DC, 05, 40, 1F, 11, 00, 00, 00

Header: 61, 08, 0A, 00, 81, 50: TEC_Get_StatusUpdate, 10 byte data packet, Generic USB Device.

ITec:.E8, 03: 0x03E8 (1000 decimal), i.e. 1 V.

TAct:. DC, 05: 0x05DC (1500 decimal), i.e. 1.5 V.

TSet: 40, 1F: 0x1F40 (8000 decimal), i.e. 80 °C.

StatusBits: 11,00,00,00, 0X00000011 (17 decimal) i.e. TEC is enabled with Tact display mode selected. No errors.

MGMSG_TEC_ACK_STATUSUPDATE

0x0862

Only Applicable If Using USB COMMS. Does not apply to RS-232 COMMS

Function:If using the USB port, this message called "server alive" must be sent
by the server to the controller at least once a second or the
controller will stop responding after ~50 commands.
The controller keeps track of the number of "status update" type of
messages (e.g.move complete message) and it if has sent 50 of
these without the server sending a "server alive" message, it will
stop sending any more "status update" messages.
This function is used by the controller to check that the PC/Server
has not crashed or switched off. There is no response.

Structure (6 bytes):

		head	ler only		
82	08	00	00	d	S

TX 62, 08, 00, 00, 21, 01

TIM and KIM Control Messages

Introduction

The functionality for the TIM101 and KIM101 Piezo Motor Controllers is accessed via the ThorlabsPZMOT Control Object, and provides the functionality required for a client application to control a number of Controller units.

Every hardware unit is factory programmed with a unique 8-digit serial number. This serial number is key to operation of the Thorlabs Server software and is used by the Server to enumerate and communicate independently with multiple hardware units connected on the same USB bus.

The serial number must be allocated using the HWSerialNum property, before an ActiveX control can communicate with the hardware unit. This can be done at design time or at run time.

The methods of the Piezo Motor Controller can then be used to perform activities such as setting the drive voltage, setting the jog step size and setting top panel control parameters.

Note. The channel being addressed must be enabled by calling the <u>Set_ChanEnableState</u> method, before the following methods can be used.

For details on the use of the TIM101 and KIM101 Controller units, refer to the handbook available to download from www.thorlabs.com.

MGMSG_PZMOT_SET_PARAMS MGMSG_PZMOT_REQ_PARAMS MGMSG PZMOT GET PARAMS

0x08C0 0x08C1 0x08C2

Function: This generic parameter set/request message is used to control the functionality of the TIM101 and KIM101 controllers. The specific parameters to control are identified by the use of sub-messages. These sub messages comply with the general format of the Thorlabs message protocol but rather than having a unique first and second byte in the header carrying the "message identifier" information, the first and second byte remain the same. Instead, for the SET, REQ and GET messages, the message identifier is carried in the first two bytes in the data packet (7 and 8) part of the message, Likewise, when the unit responds, the first two bytes of the response remain the same and the first two bytes of the data packet identify the sub-message to which the information returned in the remaining part of the data packet relates.

The following sub messages are applicable to the TIM101:

Set/Request/Get_PZMOT_PosCounts (sub-message ID = 05) Set/Request/Get_PZMOT_DriveOPParams (sub-message ID = 07) Set/Request/Get_TIM_JogParameters (sub-message ID = 09) Set/Request/Get TIM_PotParameters (sub-message ID = 11) Set/Request/Get TIM_ButtonParameters (sub-message ID = 13)

The following sub-messages are applicable to the KIM101:

```
Set/Request/Get_PZMOT_PosCounts (sub-message ID = 05)
Set/Request/Get_PZMOT_DriveOPParams (sub-message ID = 07)
Set/Request/Get PZMOT LimitSwitchParams (sub-message ID = 0B)
Request/Get_PZMOT_HomeParams (sub-message ID = 0F)
Set/Request/Get_PZMOT_KCubeMMIParams (sub-message ID = 15)
Set/Request/Get_PZMOT_TrigIOConfig (sub-message ID = 17)
Set/Request/Get_PZMOT_TrigParams (sub-message ID = 19)
Set/Request/Get_PZMOT_ChanEnableMode (sub-message ID = 2B)
Set/Request/Get_PZMOT_KCubeJogParams (sub-message ID = 2D)
Set/Request/Get_PZMOT_KCubeFeedbackSigParams (sub-message ID = 30)
Set/Request/Get_PZMOT_KCubeMoveRelativeParams (sub-message ID = 32)
Set/Request/Get_PZMOT_KCubeMoveAbsoluteParams (sub-message ID = 34)
```

```
The following sub-messages are applicable to PDXC2:
Set/Request/Get_PZMOT_ CloseLoopParams (sub-message ID = 39)
Set/Request/Get_PZMOT_EtmConfig (sub-message ID = 3B)
Set/Request/Get PZMOT EtmParams (sub-message ID = 3C)
Request/Get_PZMOT_TPOS (sub-message ID = 3D)
Set/Request/Get_PZMOT_EthernetParams (sub-message ID = 3F)
Request/Get_PZMOT_CURRENT_POS (sub-message ID = 40)
Set/Request/Get_PZMOT_AMD (sub-message ID = 43)
Set/Request/Get_PZMOT_JogParams (sub-message ID = 44)
```

Set/Request/Get_PZMOT_AmpOutParams (sub-message ID = 45) Set/Request/Get_PZMOT_OpenMoveParams (sub-message ID = 46) Set/Request/Get_PZMOT_CloseMoveParams (sub-message ID = 47)

The examples on the following pages describe these messages in more detail.

Set/Request/Get_PZMOT_PosCounts (sub-message ID = 05) Applicable to both TIM101 and KIM101

This sub-message sets/returns the position counter value and is used to set the counter to zero when the motor is at the required zero position. All absolute moves are then measured from this zeroed position.

SET:

Command structure (18 bytes) 6 byte header followed by 12 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9		
	header							Data			
C0	CO 08 0E 00 d s					SubN	1sgID	Chan	Ident		

10	11	12	13	14	15	16	17		
	Data								
	Posi	EncC	ount						

Data Structure:

field	description	format
SubMsgID	The message ID (i.e. 0500) of the message containing	word
	the parameters	
Chanldent	The channel to be addressed.	word
	Chan 1 = 1, Chan 2 = 2, Chan 3 = 4, Chan 4 = 8	
Position	The position counter value, specified in number of	long
	steps must be set to zero.	
EncCount	Not Used	long

Example: Set the TIM Position Counter

 Header: C0, 08, OC, 00, D0, 01: PZMOT_SET_PARAMS, 12 byte data packet, USB Device.

 SubMsgID: 05, 00
 Set_TIM_PositionCounters

 ChanIdent: 01, 00
 Channel 1

 Position: 00, 00, 00, 00
 Zero

 EncCount: 00, 00, 00, 00
 Not Used

REQUEST:

Command structure (6 bytes):

0 1 2 3 4 5

header only							
C1	08	05	01	d	S		

TX C1, 08, 05, 01, D0, 01,

GET:

Command structure (20 bytes) 6 byte header followed by 14 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
		Data							
C2	08	0E	00	d	S	SubMsgID ChanIde		Ident	

10	11	12	13	14	15	16	17			
	Data									
	Posi	tion			EncC	ount				

See Set message for structure

Set/Request/Get_DriveOPParameters (sub-message ID = 07) Applicable to both TIM101 and KIM101

This sub-message sets various drive parameters which define the speed and acceleration of moves initiated in the following ways:

- by clicking in the position display
- via the top panel controls when 'Go To Position' mode is selected (in the Set_TIM_JogParameters (09) or Set_KCubeMMIParams (15) sub-messages).
- via software using the MoveVelocity, MoveAbsoluteStepsEx or MoveRelativeStepsEx methods.

Note. Drive parameters for Jog moves are specified in the Set_TIM_JogParameters submessage.

SET:

Command structure (20 bytes) 6 byte header followed by 14 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header					Data					
C0	08	0E	00	d	S	SubMsgID		Chan	Ident	MaxV	oltage

12	13	14	15	16	17	18	19			
	Data									
	Step	Rate			Step	Accn				

Data Structure:

field	description	format
SubMsgID	The message ID (i.e. 0700) of the message containing	word
	the parameters	
Chanldent	The channel to be addressed.	word
	Chan 1 = 1, Chan 2 = 2, Chan 3 = 4, Chan 4 = 8	
MaxVoltage	The maximum piezo drive voltage, in the range 85V	word
	to 125V.	
StepRate	The piezo motor moves by ramping up the drive	long
	voltage to the value set in the MaxVoltage parameter	
	and then dropping quickly to zero, then repeating.	
	One cycle is termed a step. This parameter specifies	
	the velocity to move when a command is initiated.	
	The step rate is specified in steps/sec, in the range 1	
	to 2,000.	
StepAccn	This parameter specifies the acceleration up to the	long
	step rate, in the range 1 to 100,000 cycles/sec/sec.	

Example: Set the TIM Drive Params

TX C0,08,0E,00,81,50,07,00,01,00,6E,00,F4,01,00,00,A0,86,01,00

Header: C0, 08, OE, 00, 81, 50: PZMOT_SET_PARAMS, 18 byte data packet, USB Device. *SubMsgID: 07, 00 Set_TIM_DriveParameters*

ChanIdent: 01, 00	Channel 1	
<i>MaxVoltage</i> : 6E, 00	100V	(6E)
StepRate: F4, 01, 00, 00	500 Steps/Sec	(01F4)
StepAccn: A0, 86, 01, 00	10,000 Steps/Sec/Sec	(0186A0

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5				
	header only								
C1	08	07	01	d	S				

TX C1, 08, 07, 01, 50, 01,

GET:

Command structure (20 bytes) 6 byte header followed by 14 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder			Data					
C2	08	OE	00	d	S	SubMsgID		Chan	Ident	MaxV	oltage

12	13	14	15	16	17	18	19			
Data										
	Step	Rate		StepAccn						

See Set message for structure

Set/Request/Get_TIM_JogParameters (sub-message ID = 09) Applicable only to TIM101 units

This sub-message sets various jog parameters which define the speed and acceleration of moves initiated in the following ways:

- by clicking the jog buttons on the GUI panel
- by pressing the buttons on the unit when 'Single Step' mode is selected.
- via software using the MoveJog method.

Note. Drive parameters for motor moves are specified in the Set_TIM_DriveParameters submessage.

SET:

Command structure (24 bytes)

6 byte header followed by 18 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder		Data						
C0	08	12	00	d	S	SubMsgID		Chan	Ident	JogN	1ode

12	13	14	15	16	17	18	19	20	21	22	23
Data											
	JogStepSize JogStepRate								JogSte	pAccn	

Data Structure:

field	description	format
SubMsgID	The message ID (i.e. 0900) of the message containing the	word
	parameters	
Chanldent	The channel to be addressed.	word
	Chan 1 = 1, Chan 2 = 2, Chan 3 = 4, Chan 4 = 8	
JogMode	Jog commands can be issued by calling the MoveJog method, via the Motor Control GUI panel or by pressing the buttons on the hardware unit. When a jog command is received, if the jog mode is set to 1 (i.e. 'Continuous') the motor continues to move until the jog signal is removed (i.e. the jog button is released) when the motor will stop immediately. If the mode is set to '2' (i.e. Single Step) the motor moves by the step size specified in the JogStepSize parameter.	word
JogStepSize	A jog step consists of a number of drive pulses. This parameter specifies the number of pulses which make up a jog step, in the range 1 to 2,000.	long
JogStepRate	The piezo motor moves by ramping up the drive voltage to the value set in the <u>Set TIM DriveParameters</u> sub-message and then dropping quickly to zero, then repeating. One cycle is termed a step. This parameter specifies the velocity to move when a command is initiated. The step rate is specified in steps/sec, in the range 1 to 2,000	long
JogStepAccn	This parameter specifies the acceleration up to the step rate, in the range 1 to 100,000 cycles/sec/sec.	long

Example: Set the TIM Jog Parameters

TX C0,08,12,00,81,50,09,00,01,00,02,00,FA,00,00,00,F4,01,00,00,A0,86,01,00

Header: C0, 08, 12, 00, 81, 50: PZMOT_SET_PARAMS, 18 byte data packet, Generic USB Device.

SubMsgID: 09, 00	Set_TIM_JogParameter	rs -
ChanIdent: 01, 00	Channel 1	
<i>JogMode</i> : 02, 00	Single Step Jog Mode	
JogStepSize: FA. 00, 00, 00	250 steps (FA)	
JogStepRate: F4, 01, 00, 00	500 Steps/Sec	(01F4)
JogStepAccn: A0, 86, 01, 00	10,000 Steps/Sec/Sec	(0186A0

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5						
	header only										
C1	C1 08 09 01 d s										

TX C1, 08, 09, 01, 50, 01,

GET:

Command structure (24 bytes) 6 byte header followed by 18 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header							Da	ıta		
C2	08	12	00	d	S	SubN	1sgID	Chan	Ident	JogN	/lode
12	13	14	15	16	17	18	19	20	21	22	23
					Do	ata					
	JogStepSize JogSte								JogSte	pAccn	

See Set message for structure

Set/Request/Get_TIM_PotParameters (sub-message ID = 11) Applicable only to TIM101 units

This sub-message defines the speed of a move initiated by the potentiometer on the top panel of the hardware unit.

The potentiometer slider is sprung such that when released it returns to its central position. In this central position the piezo motor is stationary. As the slider is moved away from the centre, the motor begins to move. Bidirectional control of the motor is possible by moving the slider in both directions. The speed of the motor increases as a function of slider deflection.

SET:

Command structure (14 bytes). 6 byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13
		hea	ıder			Data							
C0	08	08	00	d	S	SubMsgID ChanIdent MaxStepRat				epRate			

Data Structure:

field	description	format
MsgID	The message ID (i.e. 11,00) of the message containing the parameters	word
Chanldent	The channel to be addressed.	word
	Chan 1 = 1, Chan 2 = 2, Chan 3 = 4, Chan 4 = 8	
MaxStepRate	The speed (in drive pulses per second) of a move initiated by the top	long
	panel potentiometer, in the range 1 to 2,000.	

Example: Set the TIM Pot Parameters

TX C0,08,08,00,81,50,11,00,01,00,E8,03,00,00

 Header: C0, 08, 08, 00, 81, 50:
 TIM_SetParams, 08 byte data packet, Generic USB Device.

 SubMsgID:11, 00:
 Set_TIM_PotParams

 ChanIdent: 01, 00
 Channel 1

 MaxStepRate: E8, 03, 00, 00
 1000 (03E8) pulses per second

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5					
	header only									
C1 08 09 01 d s										

TX C1, 08, 11, 01, 50, 01,

GET:

Command structure (14 bytes) 6 byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13
		hea	der			Data							
C2	08	08	00	d	S	SubMsgID ChanIdent					MaxSt	epRate	

See SET for data structure.

Set/Request/Get_TIM_ButtonParameters (sub-message ID = 13) Applicable only to TIM101 units

The buttons on the top of the unit can be used either to jog the motor, or to perform moves to absolute positions. This sub-message sets the operation mode of the buttons.

SET:

Command structure (24 bytes) 6 byte header followed by 18 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder			Data					
C0	08	12	00	d	S	SubN	1sgID	Chan	Ident	JogN	1ode
12	13	14	15	16	17	18	19	20	21	22	23
					Da	nta					

Position2

TimeOut1

TimeOut2

Data Structure:

Position1

field	description	format
SubMsgID	The message ID (i.e. 1300) of the message containing	word
	the parameters	
Chanldent	The channel to be addressed.	word
	Chan 1 = 1, Chan 2 = 2, Chan 3 = 4, Chan 4 = 8	
Mode	This parameter specifies the mode of operation of	word
	the buttons. If set to '1' (Jog Mode), the front panel	
	buttons are used to jog the motor. Once set to this	
	mode, the move parameters for the buttons are	
	taken from the 'Jog' parameters set via the	
	' <u>Set_TIM_JogParameters</u> sub-message.	
	If set to '2' (Position Mode) each button can be	
	programmed with a different position value (as set in	
	the Position1 and position2 parameters below), such	
	that the controller will move the motor to that	
	position when the specific button is pressed.	
Position1	This parameter is applicable only if Position mode is	long
	selected above, and is the position to which the	
	motor will move when the top button is pressed. The	
	position is set in number of steps, measured from the	
	zero position.	
Position2	This parameter is applicable only if Position mode is	long
	selected above, and is the position to which the	
	motor will move when the bottom button is pressed.	
	The position is set in number of steps, measured	
	from the zero position.	
TimeOut1	For Future Use	word
TimeOut2	For Future Use	word

Example: Set the TIM Button Parameters

TX C0,08,12,00,81,50,13,00,01,00,01,00,C8,00,00,00,F4,01,00,00,FA,00,FA,00

Header: C0, 08, 12, 00, 81, 50: PZMOT_SET_PARAMS, 18 byte data packet, Generic USB Device.

SubMsgID: 13, 00 ChanIdent: 01, 00 Mode: 01, 00 Position1: C8. 00, 00, 00 Position2: F4, 01, 00, 00 TimeOut1: FA, 00, TimeOut2: FA, 00, Set_TIM_ButtonParameters Channel 1 Jog Mode 200 steps from the zero position 500 steps from the zero position Not Used Not Used

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5						
	header only										
C1	C1 08 13 01 d s										

TX C1, 08, 13, 01, 50, 01,

GET:

Command structure (24 bytes) 6 byte header followed by 18 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
header						Data						
C2	08	12	00	d	S	SubMsgID ChanIdent JogMoc					/lode	
12	13	14	15	16	17	18	19	20	21	22	23	
					Do	nta						
Position1 Posit						tion2		Time	Out1	Time	Out2	

See Set message for structure

Set/Request/Get_PZMOT_LimSwitchParams (sub-message ID = 0B)

This message is not implemented at this time and is for future use with encoder-equipped actuators. Applicable only to KIM001 and KIM101 units

The action that the forward and reverse hardware limit switches make on contact is inherent in the design of the stage being driven. This sub-message notifies the system to the action of the limit switches associated with the stage/actuator being driven by the channel specified.

SET:

Command structure (16 bytes) 6 byte header followed by 10 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11		
	header						Data						
C0	08	0A	00	d	S	SubN	SubMsgID ChanIdent FwdH		FwdHa	rdLimit			

12	13	14	15					
	Data							
RevHa	dLimit	Stag	gelD					

Data Structure:

field	description	format				
SubMsgID	The message ID (i.e. 0B00) of the message containing	word				
	the parameters					
Chanldent	The channel to be addressed.	word				
	Chan 1 = 1, Chan 2 = 2, Chan 3 = 4, Chan 4 = 8					
FwdHardLimit	The operation of the Forward hardware limit switch	word				
	when contact is made.					
	0x01 Ignore switch or switch not present.					
	0x02 Switch makes on contact.					
	0x03 Switch breaks on contact.					
	0x04 Switch makes on contact - only used for					
	homes (e.g. limit switched rotation stages).					
	0x05 Switch breaks on contact - only used for					
	homes (e.g. limit switched rotations stages).					
RevHardLimit	The operation of the Reverse hardware limit switch	word				
	when contact is made – see FWDHardLimit for					
	parameter values.					
StageID	Not Used	word				

Example: Set the KIM Limit Switch Parameters

TX C0,08,0A,00,81,50, 0B,00,01,00,02,00,02,00,00,00,

Header: C0, 08, 12, 00, 81, 50: PZMOT_SET_PARAMS, 10 byte data packet, Generic USBDevice.SubMsgID: 0B, 00Set_LimSwitchParamsChanIdent: 01, 00Channel 1FwdHardLimit: 02, 00Switch makes on contactRevHardLimit: 02, 00Switch makes on contact

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5					
	header only									
C1	08	OB	01	d	S					

TX C1, 08, 13, 01, 50, 01,

GET:

Command structure (16 bytes) 6 byte header followed by 10 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
	header						Data					
C2	08	0A	00	d	S	SubMsgID Chanldent FwdHa			rdLimit			

12	13	14	15					
	Data							
RevHa	dLimit	Stag	gelD					

See Set message for structure

Request/Get_PZMOT_HomeParams (sub-message ID = 0F) Applicable only to KIM001 and KIM101 units Note. This message is for future use with closed loop homing applications and is not yet implemented. It is shown for reference only.

Used to set the home parameters for the stage/actuator associated with the specified motor channel.

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5					
	header only									
C1	08	OF	00	d	S					

GET:

Command structure (22 bytes) 6 byte header followed by 16 byte data packet as follows:

0	1	2	3	4	5	6 7 8 9 10 11					11			
	header							Data						
C2	08	10	00	d	S	SubMsgID		Chan	dent	HomeD	irection			

12	13	14	15	16	17	18	19	20	21	
	Data									
HomeLimSwitch HomeStepRa						ł	HomeOf	fsetDist		

Data Structure:

field	description	format
SubMsgID	The message ID (i.e. 0F00) of the message containing	word
	the parameters	
Chanldent	The channel to be addressed.	word
	Chan 1 = 1, Chan 2 = 2, Chan 3 = 4, Chan 4 = 8	
HomeDirection	The direction sense for a move to Home, either	word
	1 - Forward/Positive or	
	2 - Reverse/negative.	
HomeLimSwitch	The limit switch associated with the home position	word
	1 - Forward or	
	2 - Reverse	
HomeStepRate	The homing velocity (i.e. step rate) in position	long
	steps/sec.	
	A 4 byte unsigned long value.	
HomeOffsetDist	The distance of the Home position from the Home	long
	Limit Switch. This is a 4 byte signed integer that	
	specifies the offset distance in position steps, in the	
	range 0 to 10000.	

Example: Set the home parameters for chan 2 as follows: Home Direction: Reverse. Limit Switch: Reverse Home Vel: 1000 steps/sec Offset Dist: 500 steps.

TX C2, 08, 10, 00, 81, 50, 0F, 00, 02, 00, 02, 00, 02, 00, E8. 03, 00, 00, F4, 01, 00, 00,

Header: C2, 08, 10, 00, A2, 01: Get KIM HomeParams, 16 byte data packet, Generic USB Device SubMsg ID: 0F, 00 Chan Ident: 02, 00: Channel 2 HomeDirection: 02, 00: Reverse HomeLimSwitch: 02, 00: Reverse HomeStepRate: E8, 03, 00, 00: 1000 steps/sec Offset Distance: F4, 01, 00, 00: 500 Step Offset

Set/Request/Get_PZMOT_KCubeMMIParams (sub-message ID = 15) Applicable only to KIM001 and KIM101 units

This sub-message is used to configure the operating parameters of the top panel Joystick.

SET

Command structure (30 bytes)

6 byte header followed by 24 byte data packet.

0	1	2	3	4	5	6	7	8	9	10	11		
		hea	ıder			Data							
C0	08	1C	00	d	S	SubMsg ID ChanIdent				JSMode			
										_			
12	13	14	15	16	17	18	19	20	21				
				Do	ata								
	JSMaxS	tepRate		JSDir	Sense	PreSetPos1							
										1			
22	23	24	25	26	27	28	29						
	Data												
	PreSe	tPos2		DispBri	ghtness	Rese	erved						

Data Structure:

field	description	format
SubMsg ID	The message ID (i.e. 1500) of the message containing the parameters	word
Chanldent	The channel to be addressed. Chan 1 = 1, Chan 2 = 2, Chan 3 = 4, Chan 4 = 8	word
JSMode	This parameter specifies the operating mode of the joy stick as follows: 1 Velocity Control Mode - Deflecting the joystick starts a move with the velocity proportional to the deflection. The maximum velocity (i.e. velocity corresponding to the full deflection of the joystick) is specified in the JSMaxStepRate and parameter following. 2 Jog Mode - Deflecting the joystick initiates a jog move, using the parameters specified by the PZMOT_JogParams sub-message. Keeping the joystick deflected repeats the move automatically after the current move has completed. 3 Go To Position Mode - Deflecting the joystick starts a move from the current position to one of the two predefined "teach" positions. The teach positions are specified in number of steps from the home position in the PresetPos1 and PresetPos2 parameters. For the KIM101 unit, move the joystick left (Ch1 and 3) or up (Ch 2 and 4) to go to position 1, and right or down to go to position 2. For the KIM001 unit, move the joystick up to go to position 1, and down to go to position 2.	word
JSMaxStepRate	The max velocity of a move initiated by the top panel joystick (i.e. the max step rate for full joystick deflection), in the range 1 to 2000 position steps/sec.	long

		1
JSDirSense	This parameter specifies the direction of a move initiated	word
	by the joystick as follows:	
	0 Joystick initiated moves are disabled. The joystick is used	
	for menuing only.	
	1 Upwards/Right deflection of the joystick results in a	
	positive motion (i.e. increased position count).	
	The following option applies only when the JSMode is set	
	to Velocity Control Mode (1). If set to Jog Mode (2) or Go to	
	Position Mode (3), the following option is ignored.	
	2 Upwards/Right deflection of the joystick results in a	
	negative motion (i.e. decreased position count).	
PresetPos1	The preset position 1 when operating in go to position	long
	mode, measured in position steps from the home position.	
PresetPos2	The preset position 2 when operating in go to position	long
	mode, measured in position steps from the home position.	
DispBrightness	In certain applications, it may be necessary to adjust the	word
	brightness of the LCD display on the top of the unit. The	
	brightness is set as a value from 0 (Off) to 100 (brightest).	
	The display can be turned off completely by entering a	
	setting of zero, however, pressing the MENU button on the	
	top panel will temporarily illuminate the display at its	
	lowest brightness setting to allow adjustments. When the	
	display returns to its default position display mode, it will	
	turn off again.	

REQ:

Command structure (6 bytes):

0	1	2	3	4	5					
	header only									
C1 08 15 00 d s										

Example:

Request the settings for the top panel joystick

TX C1, 08, 15, 00, 50, 01

GET:

Response structure (6 bytes):

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder			Data					
C2	08	1C	00	d	S	SubN	1sg ID	Chan	Ident	JSM	ode
12	13	14	15	16	17	18	19				
	JSMaxS	tepRate		JSDir	Sense	PreSetPos1					
				•		•					
22	23	24	25	26	27	28	29				
			Dat	a							
	PreSe	tPos2		DispBri	ghtness	Rese	erved				

For structure see SET message above.

Set/Request/Get_PZMOT_KCubeTrigIOConfig (sub-message ID = 17) Applicable only to KIM001 and KIM101 units

The KIM101 K-Cube inertial piezo motor controller has two bidirectional trigger ports (I/O 1 and I/O 2) that can be used as a general purpose digital input/output, or can be configured to output a logic level to control external equipment.

When the port is used as an output it provides a push-pull drive of 5 Volts, with the maximum current limited to approximately 8 mA. The current limit prevents damage when the output is accidentally shorted to ground or driven to the opposite logic state by external circuitry. The active logic state can be selected High or Low to suit the requirements of the application.

This sub-message sets the operating parameters of the I/O 1 and I/O 2 connectors on the front panel of the unit.

Warning. Do not drive the TRIG ports from any voltage source that can produce an output in excess of the normal 0 to 5 Volt logic level range. In any case the voltage at the TRIG ports must be limited to -0.25 to +5.25 Volts.

Trigger Modes

Input Trigger Modes

When configured as an input, the TRIG ports can be used as a general purpose digital input, or for triggering a drive voltage change as follows:

0x00 DISABLED - The trigger IO is disabled.

0x01 GPI - General purpose logic input (read through status bits using the PZ_GET_PZSTATUSUPDATE message).

0x02 RELMOVE - Input trigger for a relative move. On receipt of the trigger, the motor will move by the number of position steps entered in the <u>PZMOT_KCubeMoveRelativeParams</u> sub-message (0x32).

0x03 ABSMOVE - Input trigger for an absolute move. On receipt of the trigger, the motor will move to the absolute position entered in the PZMOT_KCubeMoveAbsoluteParams submessage (0x34).

0x04 RESETCOUNT - Input trigger for count reset. On receipt of the trigger, the counter will reset and all subsequent moves will be measured from the current position.

When used for triggering a move, the port is edge sensitive. In other words, it has to see a transition from the inactive to the active logic state (Low->High or High->Low) for the trigger input to be recognized. For the same reason a sustained logic level will not trigger repeated moves. The trigger input has to return to its inactive state first in order to start the next trigger.

Output Trigger Modes

When configured as an output, the TRIG ports can be used as a general purpose digital output.

OxOA GPO - General purpose logic output (set using the MOD_SET_DIGOUTPUTS message). *OxOB* INMOTION - Trigger output active (level) when motor 'in motion'. The output trigger goes high (5V) or low (0V) (as set in the ITrig1Polarity and ITrig2Polarity parameters) when the stage is in motion. *OxOC* MAXVELOCITY - Trigger output active (level) when motor is at 'max velocity'. The max velocity limit that generates the trigger is dependent on the type of move being performed, e.g. jog move, joystick move etc.

Ox10 FWDLIMIT - Trigger output active (level) when the FWD limit switch is activated.
 Ox11 REVLIMIT - Trigger output active (level) when the REV limit switch is activated.
 Ox12 EITHERLIMIT - Trigger output active (level) when the either the FWD or REV limit switch is activated.

The following modes can be set to only one trigger at a time.

OxOD POSSTEPS_FWD - Trigger output active (pulsed) at pre-defined positions moving forward (set using StartPosFwd, IntervalFwd, NumPulsesFwd and PulseWidth parameters in the <u>SetKCubeTrigParams</u> message) – see Trigger Out Position Steps section below. Only one Trigger port at a time can be set to this mode.

OxOE POSSTEPS_REV - Trigger output active (pulsed) at pre-defined positions moving backwards (set using StartPosRev, IntervalRev, NumPulsesRev and PulseWidth parameters in the <u>SetKCubeTrigParams</u> message) – see Trigger Out Position Steps section below. Only one Trigger port at a time can be set to this mode.

OxOF POSSTEPS_BOTH Trigger output active (pulsed) at pre-defined positions moving forwards and backward – see Trigger Out Position Steps section below. Only one Trigger port at a time can be set to this mode.

Trigger Out Position Steps

In the three position step modes described above, the controller outputs a configurable number of pulses, of configurable width, when the actual position of the stage matches the position values configured as the Start Position and Position Interval - see <u>SetKCubeTrigParams</u> message. These modes allow external equipment to be triggered at exact position values (measured in number of steps).

Using the POSSTEPS modes above, position triggering can be configured to be unidirectional (forward or reverse only) or bidirectional (both). In bidirectional mode the forward and reverse pulse sequences can be configured separately. A cycle count setting (set in the <u>SetKCubeTrigParams</u> message, INumCycles parameter) allows the uni- or bidirectional position triggering sequence to be repeated a number of times.

Example for a move from 0 to 2000 position steps.

In forward direction: The first trigger pulse occurs at 1000 steps (StartPosFwd), the next trigger pulse occurs after another 500 steps (PosIntervalFwd), the stage then moves to 2000 steps.

In reverse direction: The next trigger occurs when the stage gets to 1200 steps.

Please note that position triggering can only be used on one TRIG port at a time.

The operation of the position triggering mode is described in more detail in the <u>SetKCubeTrigParams</u> message.

Trigger Polarity

The polarity of the trigger pulse is specified in the TrigPolarity parameters as follows: 0x01 The active state of the trigger port is logic HIGH 5V (trigger input and output on a rising edge).

0x02 The active state of the trigger port is logic LOW 0V (trigger input and output on a falling edge).

SET:

Command structure (32 bytes) 6 byte header followed by 26 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder			Data					
C0	08	1A	00	d	S	SubN	SubMsgID TrigChannel1 TrigCl		gID TrigChannel1		annel2
12	13	14	15	16	17	18	19		20 1	to 31	
					D	ata					
Trig1	Mode	Trig1P	olarity	Trig2	Mode	Trig2P	olarity	Reserved			

field	description	format
SubMsg ID	The message ID (i.e. 17, 00) of the message containing	word
	the parameters	
TrigChannel1	The drive channel that uses Trig 1 (I/O 1) as follows:	word
	Chan 1 = 1, Chan 2 = 2, Chan 3 = 4, Chan 4 = 8	
TrigChannel2	The drive channel that uses Trig 2 (I/O 2) as follows:	word
	Chan 1 = 1, Chan 2 = 2, Chan 3 = 4, Chan 4 = 8	
Trig1Mode	TRIG1 operating mode:	word
Trig1Polarity	The active state of TRIG1 (i.e. logic high or logic low) .	word
Trig2Mode	TRIG2 operating mode:	word
Trig2Polarity	The active state of TRIG2 (i.e. logic high or logic low) .	word
Reserved		6 words

Data Structure:

Example:

TX C2, 08, 1A, 00, D0, 01, 17, 00, 01, 00, 02, 00, 02, 00, 01, 00, 10, 00, 01, 00, 00, 00

Header: C2, 08, 1A, 00, D0, 01: Set_KCube_TriglOConfig, 16 byte data packet, d=D0 (i.e. 50 ORed with 80 i.e. generic USB device), s=01 (PC).

SubMsgID: 17,00	KCubeTrigIOConfig
TrigChannel1: 01, 00:	Channel 1 to use Trig I/O 1
TrigChannel2: 02,00	Channel 2 to use Trig I/O 2
Trig1Mode – 02, 00	TrigIn_Relative Move
Trig1Polarity – 01,00	High
Trig2Mode – 10,00	Fwd Limit switch activated
Trig2Polarity – 01,00	High

REQ:

Command structure (6 bytes):

0	1	2	3	4	5				
	header only								
C1	08	01	00	d	S				

GET:

Command structure 32 bytes

6 byte header followed by 26 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder			Data					
C2	08	10	00	d	S	SubN	SubMsgID		Trig1Channel1 Trig1Channe		
10	10	14	1 Г	16	17	10 10 20+			to 21		

12	13	14	15	16	17 D	18 ata	19	20 to 31
Trig1I	Mode	Trig1P	olarity	Trig2	Vode		olarity	Reserved

See SET message for structure.

Set/Request/Get_PZMOT_KCubeTrigParams (sub-message ID = 19) Applicable only to KIM001 and KIM101 units

The KIM101 K-Cube inertial piezo motor controllers have two bidirectional trigger ports (I/O 1 and I/O 2) that can be set to be used as input or output triggers. This method sets operating parameters used when the triggering mode is set to a trigger out position steps mode by calling the <u>PZMOT_KCubeTriglOConfig</u> message.

As soon as position triggering is selected on either of the TRIG ports, the port will assert the inactive logic state. As the stage moves in its travel range and the actual position matches the position set in the StartPosFwd parameter, the TRIG port will output its active logic state. The active state will be output for the length of time specified by the PulseWidth parameter, then return to its inactive state and schedule the next position trigger point at the "StartPosFwd value plus the value set in the fPosIntervalFwd parameter. Thus when this second position is reached, the TRIG output will be asserted to its active state again. The sequence is repeated the number of times set in the NumPulsesFwd parameter. When the number of pulses set in the NumPulsesFwd parameter has been generated, the trigger engine will schedule the next position to occur at the position specified in the StartPosRev parameter. The same sequence as the forward direction is now repeated in reverse, except that the PosIntervalRev and NumPulsesRev parameters apply. When the number of pulses has been output, the entire forward-reverse sequence will repeat the number of times specified by NumCycles parameter. This means that the total number of pulses output will be NumCycles x (NumPulsesFwd + NumPulsesRev).

Once the total number of output pulses have been generated, the trigger output will remain inactive.

When a unidirectional sequence is selected, only the forward or reverse part of the sequence will be activated.

Step Count

Example for a move from 0 to 20 mm and back.

In forward direction: The first trigger pulse occurs at 10 mm (StartPosFwd), the next trigger pulse occurs after another 5 mm (PosIntervalFwd), the stage then moves to 20 mm.

In reverse direction: The next trigger occurs when the stage gets to 12 mm. Note that the position triggering scheme works on the principle of always triggering at the next scheduled position only, regardless of the actual direction of movement. If, for example, a position trigger sequence is set up with the forward start position at 10 mm, but initially the stage is at 15 mm, the first forward position trigger will occur when the stage is moving in the reverse direction. Likewise, if the stage does not complete all the forward position trigger points, the reverse triggering will not activate at all. For normal operation it is assumed that all trigger points will be reached during the course of the movement.

SET

Command structure (42 bytes)

6 byte header followed by 36 byte data packet.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	
		hec	nder						Do	nta				
C0	08	24	00	d	S	SubN	/IsgID	Chan	Ident		StartP	osFwd		
14	15	16	17	18	19	20	21	22	23	24	25			
	Data													
	Interv	alFwd			NumPu	lsesFwd	sesFwd StartPosRe					,		
				•								-		
26	27	28	29	30	31	32	33	34	35	36	37			
					Do	ata								
	IntervalRev Num					IsesRev Pulse			eWidth					

 38
 39
 40
 41

 Data
 NumCycles
 Image: Control of the second secon

Data Structure:

field	description	format
SubMsg ID	The message ID (i.e. 1900) of the message containing the parameters	word
Chan Ident	The channel being addressed as follows:	word
	Chan 1 = 1, Chan 2 = 2, Chan 3 = 4, Chan 4 = 8	
StartPosFwd -	When moving forward, this is the stage position [in position steps] to	long
	start the triggering sequence.	
IntervalFwd	When moving forward, this is the interval [in position steps] at which	long
	to output the trigger pulses.	
NumPulsesFwd	Number of output pulses during a forward move.	long
StartPosRev -	When moving backwards, this is the stage position [in position steps]	long
	to start the triggering sequence.	
IntervalRev	When moving backwards, this is the interval [in position steps] at	long
	which to output the trigger pulses.	
NumPulsesRev	Number of output pulses during a backwards move.	long
PulseWidth	Trigger output pulse width (from 1 μs to 100000 μs).	long
NumCycles	Number of forward/reverse move cycles.	long

REQ:

Command structure (6 bytes):

0	1	2	3	4	5
		head	ler only		
C1	08	Chan	00	d	S
		Ident			

Example:

Request the settings for the position trigger parameters

TX C1, 08, 01, 00, 50, 01

GET:

Response structure (42 bytes): 6 byte header followed by 36 byte data packet.

0	1	2	3	4	5	6	7	8	9	10	11	12	13
	header Data												
C2	08	24	00	d	S	SubN	1sgID	Chan	Ident		StartP	osFwd	
14	15	16	17	18	19	20	21	22	23	24	25		
					Da	nta							
	Interv	alFwd			NumPu	sesFwd StartPosRev							

26	27	28	29	30	31	32	33	34	35	36	37
	Data										
IntervalRev NumPulsesRev PulseWidth											

38	39	40	41				
Data							
	Num(Cycles					

For structure see SET message above.

Set/Request/Get_PZMOT_KCubeChanEnableMode (sub-message ID = 2B) Applicable only to KIM001 and KIM101 units

In some applications (e.g. if the actuators are fitted to a 2-axis mirror mount), it may be advantageous to move two axes at the same time by moving the joystick diagonally. The Channel 1 to 4 options allow each channel to be enabled and disabled individually. The Channel Pair options are used to move two axes simultaneously (CH1 and 2, and CH3 and 4).

SET:

Command structure (10 bytes) 6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
		header				Da	ta		
C0	08	04	00	d	S	SubMsgID Mode		de	

Data Structure:

field	description	format
SubMsgID	The message ID (i.e. 2B00) of the message containing	word
	the parameters	
Mode	The channel or channels to enable	word
	00 - None, i.e. all channels disabled	
	01 - Channel 1	
	The following parameter entries are applicable only	
	to KIM101 units, they are not applicable to KIM001	
	02 - Channel 2	
	03 - Channel 3	
	04 - Channel 4	
	05 - Channels 1 and 2	
	06 - Channels 3 and 4	

Example: Enable channels 1 and 2:

TX C0, 08, 04, 00, A2, 01, 2B, 00, 05, 00,

Header: C0, 08, 04, 00, A2, 01: SetKCubeChanEnableMode, 4 byte data packet, Generic USB Device *SubMsg ID*: 2B, 00 *Mode*: 05, 00: Channels 1 and 2 enabled

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5			
header only								
C1	08	01	00	d	S			

GET:

Command structure (10 bytes)

6 byte header followed by 4 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
		heo	ader			Da	ta		
C0	08	04	00	d	S	SubMsgID		Mo	de

See SET for data structure.

Set/Request/Get_PZMOT_KCubeJogParams (sub-message ID = 2D Applicable only to KIM001 and KIM101 units

This sub-message sets various jog parameters which define the speed and acceleration of moves initiated in the following ways:

- by clicking the jog buttons on the GUI panel
- by movng the joystick on the unit when 'Jog Mode' is selected.
- via software using the MoveJog method.

It differs from the normal motor jog message in that there are two jog step sizes, one for forward and one for reverse. The reason for this is that due to the inherent nature of the PIA actuators going further in one direction as compared with another this will allow the user to potentially make adjustments to get fore and aft movement the same or similar.

Note. Drive parameters for motor moves are specified in the <u>Set PZMOT DriveOPParams</u> sub-message.

SET:

Command structure (28 bytes)

6 byte header followed by 22 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder			Data					
C0	08	16	00	d	S	SubMsgID ChanIdent JogMo			1ode		

12	13	14	15	16	17	18	19	20	21	22	23
	Data										
JogStepSizeFwd JogStepSizeRev JogStepRate											

24	25	26	27				
	Data						
	JogSte	pAccn					

Data Structure:

field	description	format
SubMsgID	The message ID (i.e. 2D00) of the message containing the	word
	parameters	
Chanldent	The channel to be addressed.	word
	Chan 1 = 1, Chan 2 = 2, Chan 3 = 4, Chan 4 = 8	
JogMode	Jog commands can be issued by calling the MoveJog	word
	method, or via the Motor Control GUI panel or by using the	
	joystick on the hardware unit. When a jog command is	
	received, if the jog mode is set to 1 (i.e. 'Continuous') the	
	motor continues to move until the jog signal is removed (i.e.	
	the jog button is released) when the motor will stop immediately.	
	If the mode is set to '2' (i.e. Single Step) the motor moves by	
	the step size specified in the JogStepSizeFwd and	
	JogStepSizeRev parameters.	
JogStepSizeFwd	A jog step consists of a number of drive pulses. This	long
	parameter specifies the number of pulses which make up a	
	jog step when moving forwards in the range 1 to 2,000.	
JogStepSizeRev	A jog step consists of a number of drive pulses. This parameter specifies the number of pulses which make up a jog step when moving backwards, in the range 1 to 2,000.	long
----------------	--	------
JogStepRate	The piezo motor moves by ramping up the drive voltage to the value set in the <u>Set TIM DriveParameters</u> sub-message and then dropping quickly to zero, then repeating. One cycle is termed a step. This parameter specifies the step rate (i.e. velocity) to move when a command is initiated. The step rate is specified in steps/sec, in the range 1 to 2,000	long
JogStepAccn	This parameter specifies the acceleration up to the step rate, in the range 1 to 100,000 cycles/sec/sec.	long

Example: Set the KIM Jog Parameters

TX C0,08,16,00,81,50, 2D,00,01,00,02,00,FA,00,00,00,F4,01,00,00,A0,86,01,00

 Header: C0, 08, 16, 00, 81, 50: PZMOT_SET_PARAMS, 22 byte data packet, Generic USB

 Device.

 SubMsgID: 2D, 00
 Set_KCubeJogParams

 ChanIdent: 01, 00
 Channel 1

 JogMode: 02, 00
 Single Step Jog Mode

 JogStepSizeFwd: FA. 00, 00, 00
 250 steps

 JogStepSizeRev: 04. 01, 00, 00
 260 steps

 JogStepRate: F4, 01, 00, 00
 500 Steps/Sec
 (01F4)

 JogStepAccn: A0, 86, 01, 00
 10,000 Steps/Sec/Sec
 (0186A0

REQUEST:

Command structure (6 bytes):

0	5							
header only								
C1 08 01 00 d s								

TX C1, 08, 01, 00, 50, 01,

GET:

Command structure (28 bytes) 6 byte header followed by 22 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
	header							Da	ıta			
C2	08	16	00	d	S	SubMsgID ChanIdent JogMo			/lode			
12	13	14	15	16	17	18	19	20	21	22	23	
	i											
	JogSte	epSize			JogSte	epRate		JogStepAccn				

See Set message for structure

Set/Request/Get_PZMOT_KCubeFeedbackSigParams (sub-message ID = 30 Applicable only to KIM001 and KIM101 units

The USER IO connector on the rear panel exposes two pairs of four digital inputs. These inputs can be used by a drive channel to receive a signal from the actuator being driven, either a differential QEP encoder feedback signal, or the FWD and REV limit switch signals. This sub message sets up the QEP/Limit switch selection for a specified channel.

SET:

Command structure (16 bytes) 6 byte header followed by 10 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header							Da	ıta		
C0	08	0A	00	d	S	SubMsgID ChanIdent FBSignal			alMode		

12 13 14 15								
Data								
	EncoderConst							

Data Structure:

field	description	format
SubMsgID	The message ID (i.e. 30,00) of the message containing the	word
	parameters	
Chanldent	The channel to be addressed.	word
	Chan 1 = 1, Chan 2 = 2, Chan 3 = 4, Chan 4 = 8	
FBSignalMode	This parameter sets the mode of the digital inputs, to	word
	receive either a feedback signal or a limit switch signal:	
	00 – DISABLED. The digital inputs are disabled	
	01 – LIMSWITCH. The inputs accept a signal when the limit	
	switches are activated.	
	The following option is for future use and is not	
	implemented at this time.	
	02 – ENCODER. The inputs accept a feedback signal from	
	the encoder in the actuator	
EncoderConst	This parameter is not implemented at this time.	long
	If the FBSignalMode parameter above is set to Encoder 02,	
	this parameter sets the calibration constant for converting	
	encoder counts to real world units (mm or degrees) for the	
	actuator being driven.	

Example:

TX C0,08,0A,00,81,50, 30,00,01,00,02,00,FA,00,00,00,

Header: C0, 08, 0A, 00, 81, 50: PZMOT_SET_PARAMS, 10 byte data packet, Generic USBDevice.SubMsgID: 30, 00Set_KCubeFBSigParamsChanIdent: 01, 00Channel 1FBSignalMode: 02, 00Encoder SignalEncoderConst: FA. 00, 00, 00250 steps/mm

REQUEST:

Command structure (6 bytes):

0 1 2 3 4 5									
	header only								
C1	C1 08 01 00 d								

TX C1, 08, 01, 00, 50, 01,

GET:

Command structure (16 bytes) 6 byte header followed by 10 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		header						Da	ıta		
C2	08	0A	00	d	S	SubMsgID ChanIdent FBSigr		FBSigna	alMode		

12 13 14 15							
Data							
EncoderConst							

See Set message for structure

Set/Request/Get_PZMOT_KCubeMoveRelativeParams (sub-message ID = 32) Applicable only to KIM001 and KIM101 units

Used to set the relative distance moved when the trigger mode is set to TRIGIN_RELMOVE in the <u>PZMOT_KCubeTrigIOConfig</u> (17) sub-message.

SET:

Command structure (14 bytes)

6 byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13
		heo	ader			Da				Data			
C0	08	08	00	d	S	SubMsgID Channel		nnel		RelDis	stance		

Data Structure:

field	description	format
SubMsgID	The message ID (i.e. 3200) of the message containing	word
	the parameters	
Channel	The channel to be addressed.	word
	Chan 1 = 1, Chan 2 = 2, Chan 3 = 4, Chan 4 = 8	
RelDistance	The relative distance to move (in position steps,	long
	negative or positive) when the trigger mode is set to	
	TRIGIN_RELMOVE (see <u>PZMOT_KCubeTriglOConfig</u>)	

Example:

TX C0, 08, 08, 00, 81, 50, 32, 00, 01, 00, E8, 03

Header: CO, O8, O8, O0, 81, 50: Set KIM MoveRelativeParams, 8 byte data packet, Generic USB Device SubMsg ID: 32, 00 Channel: 01, 00 Channel 1 RelDistance: E8, O3 i.e. 1,000 steps

REQUEST:

Command structure (6 bytes):

0	0 1 2 3 4							
header only								
C1 08 01 00 d s								

GET:

Command structure (14 bytes) 6 byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13
	header								Ľ	Data			
C0	08	08	00	d	S	SubM	sgID	Char	nnel		RelDis	stance	

See SET for data structure.

Set/Request/Get_PZMOT_KCubeMoveAbsoluteParams (sub-message ID = 34) Applicable only to KIM001 and KIM101 units

Used to set the absolute distance moved when the trigger mode is set to TRIGIN_ABSMOVE in the <u>PZMOT_KCubeTrigIOConfig</u> (17) sub-message.

SET:

Command structure (14 bytes)

6 byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13
	header								Ľ	Data			
C0	08	08	00	d	S	SubMsgID		Char	nnel		AbsDi	stance	

Data Structure:

field	description	format			
SubMsgID	ubMsgID The message ID (i.e. 3400) of the message containing				
	the parameters				
Channel	The channel to be addressed.	word			
	Chan 1 = 1, Chan 2 = 2, Chan 3 = 4, Chan 4 = 8				
AbsDistance	The absolute distance to move (in position steps) when the trigger mode is set to TRIGIN_ABSMOVE (see <u>PZMOT_KCubeTrigIOConfig</u>)	long			

Example:

TX C0, 08, 08, 00, 81, 50, 34, 00, 01, 00, 10,27

Header: CO, O8, O8, O0, 81, 50: Set KIM MoveAbsoluteParams, 8 byte data packet, Generic USB Device SubMsg ID: 34, 00 Channel: 01, 00 Channel 1 AbsDistance: 10, 27 i.e. 10,000 steps

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
C1	08	01	00	d	S		

GET:

Command structure (14 bytes)

6 byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	12	13
		hea	nder						Data				
C0	08	08	00	d	S	SubM	sgID	Char	nnel		AbsDi	stance	

See SET for data structure

Set/Request/Get_PZMOT_ CloseLoopParams (sub-message ID = 39) Applicable to PDXC2

This sub-message sets the closed loop operating parameters.

SET:

Command structure (30 bytes)

6 byte header followed by 24 byte data packet as follows:

0.0,00			,			••.					
0	1	2	3	4	5	6	7	8	9		
		he	ader			Data					
C0	08	18	00	d	S	Sub	٨sgID	Chan	Ident		
10	11	12	13	14	15	16	17	18	19		
					Data						
	Ref	Speed			Prop	ortional		Inte	egral		
20	21	22	23	24	25	26	27	28	29		
					Data						
Integral Derivative							Accel	eration			

Data Structure:

field	description	format
SubMsgID	The message ID (i.e. 3900) of the	Word
	message containing the	
	parameters	
Chanldent	The channel being addressed	Word
RefSpeed	Set the reference speed for stage,	Long
	from 0 - 20000000 nm/s	
Proportional	Set the Kp of PID, from 0 - 32767	Long
Integral	Set the Ki of PID, from 0 - 32767	Long
Derivative	Set the Kd of PID, from 0 - 32767	Long
Acceleration	Set the acceleration for trajectory	Long
	control, from 0 - 1000000000	
	nm/s²	

Example: Set the closed loop parameters

TX CO ,08 ,18 ,00 ,d0 ,01 ,39 ,00 ,01 ,00 ,40,42 ,0F ,00 ,E8 ,03 ,00 ,00 ,81 ,03 ,00 ,00 ,00 ,00 ,00 ,00 ,00 ,00 ,40,42 ,0F ,00

Header: C0, 08, 18, 00, D0, 01: PZMOT_SET_PARAMS, 24-byte data packet, Generic USB Device. *SubMsgID: 39, 00 Set_PZMOT_CloseLoopParams ChanIdent*: 01, 00 Channel 1 RefSpeed: 40,42 ,0F ,00 1000000 nm/s Proportional: E8 ,03 ,00 ,00 1000 Integral: E8 ,03 ,00 ,00 1000 Derivative: E8 ,03 ,00 ,00 1000 Acceleration: 40,42 ,0F ,00 1000000 nm/s²

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5				
	header only								
C1	C1 08 SubMsgID Chanldent d s								
TVC	TV C1 00 20 01 F0 01								

TX C1, 08, 39, 01, 50, 01,

GET:

Command structure (30 bytes)

6 byte header followed by 24 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
		hea	Data						
C2	08	18	00	d	S	SubN	/IsgID	Chan	Ident
10	11	12	13	14	15	16	17	18	19
				Da	ata				
	RefSpeed Prop					rtional		Inte	gral

20	21	22	23	24	25	26	27	28	29		
	Data										
Inte	Deriv		Accele	ration							

Set/Request/Get_PZMOT_ Etmconfig (sub-message ID = 3B) Applicable to PDXC2

This sub-message sets the external trigger operating mode.

SET:

Command structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
		hea	der				Da	ita	
C0	08	06	00	d	S	SubN	1sgID	Chan	Ident

10 11 Data ExtTrigMode

Data Structure:

field	description	format
SubMsgID	The message ID (i.e. 3B00) of the	Word
	message containing the	
	parameters	
Chanldent	The channel being addressed	Word
ExtTrigMode	0: Manual Mode,	Word
	1: Analog In with Rising trigger	
	edge mode.	
	2: Analog In with Failing trigger	
	edge mode.	
	3: Fixed-Step Distance with Rising	
	trigger edge mode.	
	4: Fixed-Step Distance with Edging	
	trigger edge mode.	
	5: Two-Fixed-Position with Rising	

trigger edge mode. 6: Two-Fixed-Position with Edging	
trigger edge mode.	
Others: Manual Mode,	

Example: Set the External Trigger Mode to analog in with Rising trigger edge mode TX C0 ,08 ,06 ,00 ,d0 ,01 ,3B ,00 ,01 ,00 ,00 ,00

Header: CO, O8, O6, O0, D0, O1: PZMOT_SET_PARAMS, 6-byte data packet, Generic USB Device. SubMsgID: 3B, O0 Set_PZMOT_EtmConfig ChanIdent: 01, 00 Channel 1.

ExtTrigMode: 01,00 Analog in with Rising trigger edge mode.

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5				
	header only								
C1	08	SubMsgID	Chanldent	d	S				
тх с	TX C1, 08, 3B, 01, 50, 01,								

GET:

Command structure (6 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
		hea	der		Data				
C2	08	06	00	d	S	SubMsgID ChanIdent			Ident

10	11		
Data			
ExtTrigMode			

See Set message for structure

Set/Request/Get_PZMOT_ EtmParams (sub-message ID = 3C) Applicable to PDXC2

This sub-message sets the external trigger operating parameter. **SET:**

Command structure (50 bytes)

6 byte header followed by 44 byte data packet as follows:

		,								
0	1	2	3	4	5	6	7	8	9	
	header						Data			
C0	08	2C	00	d	S	SubN	/IsgID	Chan	Ident	
10	11	12	13	14	15	16	17	18	19	
	Data									
	RiseFixStep Fai					ixStep RisePos1				
20	21	22	23	24	25	26	27	28	29	
				Da	ita					
Rise	Pos1		FailF	Pos1		RisePos2				
30	31	32	33	34	35	36	37	38	39	
				Da	ita					

Thorlabs Motion ControllersHost-Controller Communications ProtocolIssue 40

	FailPos2				InAnal	InAnalogOffset			
40	41	42	42 43 44 45			46	47	48	49
	Data								
InAnalo	InAnalogOffset OutAnalogO			logGain			OutAnal	ogOffset	

Data Structure:

field	description	format
SubMsgID	The message ID (i.e. 3C00) of the message containing the parameters	Word
Chanldent	The channel being addressed	Word
RiseFixStep	Rise Fixed-Step Distance, the unit is nm. From -10000000 to +10000000	Long
FailFixStep	Fail Fixed-Step Distance, the unit is nm. From -10000000 to +10000000	Long
RisePos1	First position of rise trigger, the unit is nm. From -10000000 to +10000000	Long
FailPos1	First position of fail trigger, the unit is nm. From -10000000 to +10000000	Long
RisePos2	Second position of rise trigger, the unit is nm. From -10000000 to +10000000	Long
FailPos2	Second position of fail trigger, the unit is nm. From -10000000 to +10000000	Long
InAnalogGain	Analog In gain, from 0-32768	Float
InAnalogOffset	Analog In offset, from -10000 to 10000 (mv)	Long
OutAnalogGain	Analog out offset, from 0-32768	Float
OutAnalogOffset	Analog out offset , from -10000 to 10000 (mv)	Long

Example: Set the RiseFixStep and FailFixStep value is 1000nm, First position of rise trigger is 1000000nm. Second position of rise trigger is 1000000nm. First position of fail trigger is - 10000000mm. Second position of fail trigger is -10000000mm. InAnalogGain is 1, InAnalogOffset is 1000mv, OutAnalogGain is 1, OutAnalogOffset is 500mv.

Header: C0, 08, 2C, 00, D0, 01: PZMOT_SET_PARAMS, 44-byte data packet, Generic USB Device. SubMsgID: 3C, 00 Set_PZMOT_EtmParams ChanIdent: 01, 00 Channel 1 RiseFixStep: E8,03,00,00 1000nm FailFixStep: ,E8,03,00,00 1000nm RisePos1: E8,03,00,00 First position of rise trigger is 1000nm. FailPos1: 40,42,0F,00 First position of fail trigger is 1000nm. RisePos2: 80,96,98,00 Second position of rise trigger is 1000000nm. FailPos2: C0,BD,F0,FF Second position of fail trigger is -1000000nm. InAnalogGain: 00,00,80,3F InAnalogGain is 1.0 InAnalogOffset: E8,03,00,00 InAnalogOffset is 1000mv OutAnalogGain: 00,00,C0,3F OutAnalogGain is 2.0 OutAnalogOffset: F4,01,00,00 OutAnalogOffset is 500mv

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
C1 08 SubMsgID Chanldent d s							

TX C1, 08, 3C, 01, 50, 01,

GET:

Command structure (44 bytes) 6-byte header followed by 44-byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
header							Da	ita	
C2	08	2C	00	d	S	SubN	1sgID	Chan	Ident
10	11	12	13	14	15	16	17	18	19
				Da	ata				
	RiseF	ixStep			FailFi	xStep		Rise	Pos1
20	21	22	23	24	25	26	27	28	29
				Da	ata				
Rise	Pos1		Failf	Pos1		RisePos2			
30	31	32	33	34	35	36	37	38	39
				Da	ata				
	FailPos2 InAnalogGain InAnalogOffset							gOffset	
40	41	42	43	44	45	46	47	48	49

Data

See Set message for structure

Set/Request/Get_PZMOT_ TPOS (sub-message ID = 3D) Applicable to PDXC2

Used to query target position when in external trigger mode, whose signal Analog In reflects the value.

REQUEST:

InAnalogOffset

Command structure (6 bytes):

0	1	2	3	4	5		
header only							
C1 08 SubMsgID Chanldent d s							

OutAnalogGain

OutAnalogOffset

TX C1, 08, 3D, 01, 50, 01,

GET:

Command structure (8 bytes)

6-byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
		hea	ider		Data				
C2	08	08	00	d	S	SubN	1sgID	Chan	Ident

10	11	12	13					
Data								
	TargetPos							

Data Structure:

field	description	format
SubMsgID	The message ID (i.e. 3D00) of the	Word
	message containing the	
	parameters	
Chanldent	The channel being addressed	Word
TargetPos	Target position when in external	Long
	trigger mode, whose signal Analog	
	In reflect the value. Range from -	
	10000000 to 10000000 nm.	

Example: Get the analog target value TX C2 ,08 ,08 ,00 ,d0 ,01 ,3D ,00 ,01 ,00 ,10 ,27 ,00 ,00

Header: C2, 08, 08, 00, D0, 01: PZMOT_GET_PARAMS, 8 byte data packet, Generic USB Device. *SubMsgID: 3D, 00 Get_PZMOT_TPOS ChanIdent*: 01, 00 Channel 1.

TargetPos: 10,27,00,00 The analog target value is 10000 nm.

Set/Request/Get_PZMOT_ EthrenetParams (sub-message ID = 3F) Applicable to PDXC2

Set the ethernet operating IP address parameters. SET: Command structure (24 bytes)

6 byte header followed by 18 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
	header						Da	ata	
C0	08	12	00	d	S	SubN	/IsgID	Chan	Ident

10	11	12	13	14	15	16	17	18	19
	Data								
Getl	pSel	IpAddr					Mask	Addr	

20	21	22	23				
Data							
GatewayAddr							

field	description	format
SubMsgID	The message ID (i.e. 3900) of the	Word
	message containing the	
	parameters	
Chanldent	The channel being addressed	Word
GetIpSel	0x0:Get IP address from DHCP	Word
	server.	
	0x1:Get IP address from	
	Parameters.	
IpAddr	Set the Ip address.	char[N]
MaskAddr	Set the Mask Address.	char[N]
GatewayAddr	Set the Gateway Address.	char[N]

Data Structure:

Example: Set the GetIpsel to 0x0(Get ip from DHCP Server), IpAddr to 192.168.1.10, MaskAddr to 255.255.255.0, GatawayAddr to 192.168.1.1.

Header: CO, O8, 12, OO, DO, O1: PZMOT_SET_PARAMS,18 byte data packet, Generic USB Device. SubMsgID: 3F, OO Set_PZMOT_EthernetParams ChanIdent: 01, 00 Channel 1. GetIpSel: 00,00 Get ip from DHCP Server. IpAddr: 0A,01,9E,CO IpAddr is 192.168.1.10 MaskAddr: 00,FF,FF,FF MaskAddr is 255.255.255.0 GatewayAddr: 01,01,9E,CO GatawayAddr is 192.168.1.1

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5				
	header only								
C1	08	SubMsgID ChanIdent d s							
TX C	TX C1, 08, 3F, 01, 50, 01,								

GET:

Command structure (18 bytes)

6 byte header followed by 18 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
	header						Da	ata	
C2	08	12	00	d	S	SubN	/IsgID	Chan	Ident
10	11	12	13	14	15	16	17	18	19
	Data								
Getl	pSel	IpAddr					Mask	Addr	

20	21	22	23				
Data							
GatewayAddr							

See Set message for structure

Set/Request/Get_PZMOT_ CURRENT_POS (sub-message ID = 40) Applicable to PDXC2

Return current position in unit of nm/steps.

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5		
	header only						
C1 08 SubMsgID Chanldent d s							

TX C1, 08, 40, 01, 50, 01,

GET:

Command structure (8 bytes)

6 byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
	header						Da	ata	
C2	08	08	00	d	S	SubN	1sgID	Chan	Ident

10	11	12	13			
Data						
CurrentPos						

Data Structure:

field	description	format
SubMsgID	The message ID (i.e. 3D00) of the	Word
	message containing the	
	parameters	
Chanldent	The channel being addressed	Word
TargetPos	If the operation mode is close loop,	Long
	The current position in unit of nm.	
	Range from -10000000 to	
	+10000000 nm, and if the	
	operation mode is open loop, The	
	current position in unit of steps,	
	Range from -10000000 to	
	+10000000 steps	

Example: Get the current position value TX: C2 ,08 ,08 ,00 ,d0 ,01 ,40 ,00 ,01 ,00 ,10 ,27 ,00 ,00

Header: C2, 08, 08, 00, D0, 01: PZMOT_GET_PARAMS, 8 byte data packet, Generic USB Device. *SubMsgID: 40, 00 Get_PZMOT_CURRENT_POS ChanIdent*: 01, 00 Channel 1.

TargetPos: 10,27,00,00 Get the current position value is 10000 nm in closed loop mode or 10000 steps in open loop mode.

Set/Request/Get_PZMOT_ AMD (sub-message ID = 43) Applicable to PDXC2

Used to enable/disable the detection of abnormal move.

SET:

Command structure (6 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
		hea	ıder		Data				
C2	08	06	00	d	S	SubMsgID ChanIdent		Ident	

10	11			
Data				
AmdE	In			

Data Structure:

field	description	format
SubMsgID	The message ID (i.e. 3B00) of the	Word
	message containing the	
	parameters	
Chanldent	The channel being addressed	Word
AmdEn	used to enable/disable the	Word
	detection of abnormal move,	
	AmdEn = 0x0 diable , AmdEn = 0x1	
	Enable .	

Example: Set the detection for abnormal move to enable. TX C0 ,08 ,06 ,00 ,00 ,01 ,43 ,00 ,01 ,00 ,01 ,00

Header: CO, O8, O6, OO, DO, O1: PZMOT_SET_PARAMS, 6-byte data packet, Generic USB Device. SubMsgID: 43, OO Set_PZMOT_AMD ChanIdent: 01, 00 Channel 1.

AmdEn: 01,00 enable abnormal move check.

REQUEST:

Command structure (6 bytes):

0	0 1 2 3 4							
header only								
C1 08 SubMsgID Chanldent d s								

TX C1, 08, 43, 01, 50, 01,

GET:

Command structure (6 bytes)

6-byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6 7 8 9		9	
		hea	header				Da	ata	
C2	08	06	00	d	S	SubMsgID ChanIdent		Ident	

10		11	
	Data	a	

AmdEn

See Set message for structure

Set/Request/Get_PZMOT_JogParams (sub-message ID = 44) Applicable to PDXC2

Used to set jog parameters.

SET:

Command structure (36 bytes)

6 byte header followed by 30 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
		hea	der				Da	ita	
C0	08	1E	00	d	S	SubMsgID ChanIdent		Ident	

10	11	12	13	14	15	16	17	18	19
				Da	ita				
JogN	JogMode OpenLoopStepSize						OpenLoo	pStepRate	
20	21	22	23	24	25	26	27	28	29
				Da	ita				
	OpenLoopAd	celeration			ClosedLoc	pStepSize		ClosedLo	opSpeed
30	31	32	33	34	35				
		Da	ata						
ClosedL	ClosedLoopSpeed ClosedLoopAcceler				on				

Data Structure:

field	description	format
SubMsgID	The message ID (i.e. 3900) of the	Word
	message containing the	
	parameters	
ChanIdent	The channel being addressed	Word
JogMode	used to set the jog mode , 0x1	Word
	continues , 0x1 single step.	
OpenLoopStepSize	A jog step consists of several drive	Long
	pulses. This parameter specifies	
	the number of pulses which make	
	up a jog step, in the range 1 to	
	2,0000.	
OpenLoopStepRate	Set the move frequency of output	Long
	pulse.range is from 800 to 20000	
	Steps/s.	
OpenLoopAcceleration	This parameter specifies the	Long
	acceleration up to the step rate, in	
	the range 1 to 20000 Steps/s ²	
ClosedLoopStepSize	Set the jog step size for closed loop	Long
	mode, unit is nm, range from 0 -	
	2000000 nm.	
ClosedLoopSpeed	Set the reference speed for stage,	Long
	from 0 - 20000000 nm/s	
ClosedLoopAcceleration	Set the acceleration for trajectory	Long

control, from 0 - 1000000000	
nm/s²	

Example: Set the jog parameters.

Header: C0, 08, 1E, 00, D0, 01: PZMOT_SET_PARAMS, 30 byte data packet, Generic USB Device. *SubMsgID: 44, 00 Set_PZMOT_JogParams ChanIdent*: 01, 00 Channel 1. JogMode: 01, 00 Continues mode.

OpenLoopStepSize: 10,27,00,00 1000 steps OpenLoopStepRate: 10,27,00,00 1000 steps/s OpenLoopAcceleration: 10,27,00,00 1000 steps/s² ClosedLoopStepSize: 40,42,0F,00 1000000 nm ClosedLoopSpeed: 80,96,98,00 10000000 nm/s ClosedLoopAcceleration: 80,96,98,00 10000000 nm/s²

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5			
header only								
C1 08 SubMsgID Chanldent d s								

TX C1, 08, 44, 01, 50, 01,

GET:

Command structure (36 bytes)

6 byte header followed by 30 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
		hea	der			Data			
C0	08	1E	00	d	S	SubMsgID Chanlden		Ident	

10	11	12	13	14	15	16	17	18	19
	Data								
JogN	1ode	e OpenLoopStepSize					OpenLoop	oStepRate	

20	21	22	23	24	25	26	27	28	29
Data									
	OpenLoopAcceleration				ClosedLoc	pStepSize		ClosedLo	opSpeed
30	31	32	33	34	35				

30	31	32	33	34	35		
Data							
ClosedLoopSpeed ClosedLoopAcceleration							

See Set message for structure

Set/Request/Get_PZMOT_AmpOutParams (sub-message ID = 45) Applicable to PDXC2

Used to set the amplifier output parameter.

SET:

Command structure (16 bytes)

6 byte header followed by 10 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
header							Da	ata	
C0	08	0 A	00	d	S	SubMsgID ChanIdent		Ident	

10	11	12	13	14	15		
Data							
OutN	OutMode ForwardAmpLevel BackAmpLevel						

Data Structure:

field	description	format
SubMsgID	The message ID (i.e. 3900) of the	Word
	message containing the	
	parameters	
ChanIdent	The channel being addressed	Word
OutMode	Reserved.	Word
ForwardAmpLevel	set output forward amplitude	Word
	level, defined by x, x ranges from	
	10 to 100 percent of max	
	amplitude level. In open loop	
	mode, can change speed by set	
	AmpLevel value.	
BackAmpLevel	set output backward amplitude	Word
	level, defined by x, x ranges from	
	10 to 100 percent of max	
	amplitude level. In open loop	
	mode, can change speed by set	
	AmpLevel value.	

Example: Set forward amplitude level to 100 percent of max amplitude level and backward amplitude level to 50 percent of max amplitude level.

TX: C0 ,08 ,0A ,00 ,d0 ,01 ,45 ,00 ,01 ,00 ,00 ,04 ,00 ,32 ,00

Header: C0, 08, 0A, 00, D0, 01: PZMOT_SET_PARAMS, 10 byte data packet, Generic USB Device. *SubMsgID: 45, 00 Set_PZMOT_AmpOutParams ChanIdent*: 01, 00 Channel 1.

OutMode: 00, 00 Reserved, no used.

ForwardAmpLevel: 64,00 100 percent of max amplitude level for forward. BackAmpLevel: 32,00 50 percent of max amplitude level for forward.

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5				
	header only								

C1 08 SubMsgID Chanldent d s

TX C1, 08, 45, 01, 50, 01,

GET:

Command structure (16 bytes)

6 byte header followed by 10 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
	header						Da	ata	
C2	08	0A	00	d	S	SubN	1sgID	Chan	Ident

10	11	12	13	14	15		
Data							
OutMode ForwardAmpLevel BackAmpLevel							

See Set message for structure

Set/Request/Get_PZMOT_OpenMoveParams (sub-message ID = 46) Applicable to PDXC2

Used to the open loop move target steps value.

SET:

Command structure (8 bytes)

6 byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
header							Da	ata	
C0	08	08	00	d	S	SubN	1sgID	Chan	Ident

10	11	12	13			
Data						
StepSize						

Data Structure:

field	description	format
SubMsgID	The message ID (i.e. 3900) of the message containing the parameters	Word
Chanldent	The channel being addressed	Word
StepSize	Set the target absolute steps. From -10000000 to +10000000	Long

Example: Set target absolute steps to 10000.

TX: C0 ,08 ,08 ,00 ,d0 ,01 ,46 ,00 ,01 ,00 ,27 ,00 ,00

Header: CO, O8, O8, O0, DO, O1: PZMOT_SET_PARAMS, 8 byte data packet, Generic USB Device. SubMsgID: 46, O0 Set_PZMOT_OpenMoveParams ChanIdent: 01, 00 Channel 1. StepSize: 10,27,00,00 Target absolute steps to 10000

REQUEST:

Command structure (6 bytes):

0	1	2	3	4	5			
header only								
C1	08	Chanldent	d	S				

TX C1, 08, 46, 01, 50, 01,

GET:

Command structure (8 bytes)

6 byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
		hea	der	Data					
C2	08	08	00	d	S	SubMsgID ChanIdent			Ident

10	11	12	13				
Data							
StepSize							

See Set message for structure

Set/Request/Get_PZMOT_CloseMoveParams (sub-message ID = 47) Applicable to PDXC2

Used to set the closed loop target position.

SET:

Command structure (8 bytes)

6 byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
		hea	der	Data					
C0	08	08	00	d	S	SubMsgID ChanIdent			Ident

10	11	12	13					
Data								
	DePos							

Data Structure:

field	description	format
SubMsgID	The message ID (i.e. 3900) of the message containing the parameters	Word
ChanIdent	The channel being addressed	Word
DePos	Set the desired position. The range is from -1000000 to +1000000 nm,	Long

Example: Set target position to 100000nm.

TX: C0 ,08 ,08 ,00 ,00 ,01 ,47 ,00 ,01 ,00 ,80 ,80 ,00 ,00

Header: C0, 08, 08, 00, D0, 01: PZMOT_SET_PARAMS, 8 byte data packet, Generic USB Device. *SubMsgID: 47, 00 Set_PZMOT_CloseMoveParams*

ChanIdent: 01, 00 Channel 1. DePos: 40,42,0F,00 Target position is 1000000 nm

REQUEST:

Command structure (6 bytes):

		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
0	1	2	3	4	5				
header only									
C1 08 SubMsgID Chanldent d s									

TX C1, 08, 47, 01, 50, 01,

GET:

Command structure (8 bytes)

6 byte header followed by 8 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9
		hea	der	Data					
C2	08	08	00	d	S	SubMsgID ChanIdent			Ident

10	11	12	13				
Data							
DePos							

See Set Message for Structure

# MGMSG_PZMOT_MOVE_ABSOLUTE MGMSG_PZMOT_SET_PARAMS 0x08D4

Function:Used to start a move to a position specified as the number of steps<br/>away from the zero position. The move will be executed using the<br/>parameters set in the TIM Set DriveOPParams sub-message.

Command structure (12 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		header				Data					
D4	08	06	00	d	S	Chan	Chan Ident AbsPosition				

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
	Chan 1 = 1, Chan 2 = 2, Chan 3 = 4, Chan 4 = 8	
AbsPosition	The distance to move, relative to the zero position, specified in number of steps.	long

Example: Set an absolute move to 100 steps

Tx D4,08,06,00,D0,01,01,00,64,00,00,00

Header: D4,08,06,00,D0,01: PZMOT_MOVE_ABSOLUTE, 6 byte data packet, Generic USBDevice.ChanIdent: 01, 00Channel 1AbsPosition: 64. 00, 00, 00100 steps (H64) from the zero position

On completion of the move, a Move Completed message will be sent.

# MGMSG_PZMOT_MOVE_COMPLETED

Function:No response on initial message, but upon completion of the<br/>absolute move sequence, the controller sends a "move completed"<br/>message:

0	1	2	3	4	5	6	7	8	9	10	11
header					Data						
D6	08	0E	00	d	S	Chan Ident AbsPosition					
12	13	14	15	16	17	18 19					
			Do	nta							
EncCount Statu					s Bits						

Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
	Chan 1 = 1, Chan 2 = 2, Chan 3 = 4, Chan 4 = 8	
AbsPosition	The distance moved, relative to the zero position, specified in number of steps.	long

Example: Send message that move to 100 steps is complete

RX D6,08,0E,00,81,50,01,00,64,00,00,00,00,00,00,00,00,00,00,00

Header: D6,08,0E,00,81,50: PZMOT_MOVE_COMPLETE, 14 byte data packet, Generic USBDevice.ChanIdent: 01, 00Channel 1AbsPosition: 64. 00, 00, 00100 steps (H64) from the zero positionEncCount: Not UsedStatusBits: Not Used

0x08D6

# MGMSG_PZMOT_MOVE_JOG

## 0x08D9

Function:Used to start a jog move. The move will be executed using the<br/>parameters set in the <u>TIM_Set_JogParameters</u> sub-message.

Command structure (6 bytes)

6 byte header followed by 6 byte data packet as follows:

0	1	2	3	4	5			
header								
D9	08	Chanldent	JogDir	d	S			

**Channel Idents** 

0x01channel 10x02channel 20x03channel 30x04channel 4

JogDir 0x01 Forward 0x02 Reverse

Example TX D9,08,01,01,50,01

On completion of the move, a <u>Move Completed</u> message will be sent.

# MGMSG_PZMOT_REQ_STATUSUPDATE MGMSG_PZMOT_GET_STATUSUPDATE

## 0x08E0 0x08E1

 Function:
 This message is returned 10 times a second, when status update messages have been requested using the MGMSG_HW_START_UPDATEMSGS function.

## GET:

Status update messages are received with the following format:-

## **Response structure (62 bytes)**

6 byte header followed by 56 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header							Do	nta		
E1	08	38	00	d	S	Chan Ident		Position1			
12	13	14	15	16	17	18	19				

12	15	14	15	10	17	18	19			
Data										
	EncCo	ount1			Status	Bits1				

## Data Structure:

field	description	format
Chan Ident	The channel being addressed	word
	Chan 1 = 1, Chan 2 = 2, Chan 3 = 4, Chan 4 = 8	
Position1	The position count for channel 1.	long
EncCount1	Not Used.	long
StatusBits1	The status bits for channel 1 – see below.	dword

The remaining 42 bytes for channel 2 to channel 4 are the same as for channel 1

bit mask	meaning
0x0000001	forward (CW) hardware limit switch is active
0x0000002	reverse (CCW) hardware limit switch is active
0x0000010	in motion, moving forward (CW)
0x0000020	in motion, moving reverse (CCW)
0x00000040	in motion, jogging forward (CW)
0x0000080	in motion, jogging reverse (CCW)
0x00000100	motor connected
0x00000200	in motion, homing
0x00000400	homed (homing has been completed)
0x00100000	digital input 1
0x10000000	power OK
0x20000000	active
0x40000000	error
0x80000000	channel enabled
0x01000000	Excessive current
0x02000000	Excessive temperature
0x04000000	Abnormal stage movement
0x0800000	Wrong stage detected

# MGMSG_PZMOT_ACK_STATUSUPDATE

## 0x08E2

Only Applicable If Using USB COMMS. Does not apply to RS-232 COMMS

Function:If using the USB port, this message called "server alive" is sent by<br/>the server to the controller after 10 status update message.<br/>The controller keeps track of the number of "status update" type of<br/>messages (e.g.move complete message) and if it has sent 10 of<br/>these without the server sending a "server alive" message, it will<br/>stop sending any more "status update" messages.<br/>This function is used by the controller to check that the PC/Server<br/>has not crashed or switched off. There is no response.

Structure (6 bytes):

0	1	2	3	4	5			
header only								
E2	08	00	00	d	S			

TX E2, 08, 00, 00, 50, 01

# MPC220 and MPC320 Control Messages

#### Introduction

The functionality for the MPC220 and MPC320 Polarization Controllers is accessed via the POL Control Object, and provides the functionality required for a client application to control a number of Controller units.

Every hardware unit is factory-programmed with a unique 8-digit serial number. This serial number is key to operation of the Thorlabs Server software and is used by the Server to enumerate and communicate independently with multiple hardware units connected on the same USB bus.

The serial number must be allocated using the HWSerialNum property, before an ActiveX control can communicate with the hardware unit. This can be done at design time or at run time.

The methods of the Polarization Controller can then be used to perform activities such as setting the home position or setting the jog step size.

Note. The channel being addressed must be enabled by calling the <u>Set_ChanEnableState</u> method, before the following methods can be used.

MGMSG_POL_SET_PARAMS	
MGMSG_POL_REQ_PARAMS	
MGMSG_ POL_GET_PARAMS	

0x0530 0x0531 0x0532

Function:

This generic parameter set/request message is used to control the functionality of the MPC220 and MPC320 polarization controllers. The specific parameters to control are identified below.

## SET:

Command structure (18 bytes)

6 byte header followed by 12 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
header				Data							
30	05	0A	00	d	S	Not Used		Velo	ocity	HomeP	osition

12	13	14	15	16	17			
Data								
JogS	tep1	JogS	tep2	JogS	tep3			

## Data Structure:

field	description	format
Velocity	The velocity of motion when a move command is received. The	word
	setting is global (i.e. applies to all 3 paddles), and is set in the range	
	10% to 100% of the max 400°/s.	
HomePosition	The home position is global (i.e. applies to all 3 paddles). It is set in	word
	encoder counts and is usually set to 0 but it can be set anywhere in	
	the range 0 to 1370 (0 to 170°) depending on the application	
	requirements.	
JogStep1	The size of step to be performed on paddle No. 1, each time the	word
	MoveJog command is called.	
	Step size is set in encoder counts in the range 0 to 1370 (0 to 170°).	
JogStep2	The size of step to be performed on paddle No. 2, each time the	word
	MoveJog command is called.	
	Step size is set in encoder counts in the range 0 to 1370 (0 to 170°).	
JogStep3	The size of step to be performed on paddle No. 3, each time the	word
	MoveJog command is called.	
	Step size is set in encoder counts in the range 0 to 1370 (0 to 170°).	

Example:Set the polarization controller parameters as follows:Velocity 50%Home Position 0Jog step size 3° for each paddle

TX 30, 05, 0C, 00, D0, 01, 00, 00, 32, 00, 00, 00, 19, 00, 19, 00, 19, 00

 Header: 30, 05, 0C, 00, D0, 01: Set Params, 12 byte data packet, Generic USB Device

 Not Used: 00, 00

 Velocity: 32, 00
 50%

 Home Position: 00, 00
 0°

 JogStep1: 19, 00
 25 encoder counts (3°)

 JogStep3: 19, 00
 25 encoder counts (3°)

 JogStep3: 19, 00
 25 encoder counts (3°)

## **REQUEST:**

Command structure (6 bytes):

0	1	2	3	4	5				
	header only								
31	05	00	00	d	S				

## GET:

Response structure (12 bytes) 6 byte header followed by 12 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
		hea	ıder		Data						
32	05	0A	00	d	S	Not Used Velocity HomePo		osition			

12	13	14	15	16	17				
	Data								
JogS	tep1	JogS	tep2	JogS	tep3				

# **CT1P Control Messages**

#### Introduction

The functionality for the CT1P Piezo Cage Translator is accessed via the Thorlabs Piezo Control Object, and provides the functionality required for a client application to control a number of Controller units.

Every hardware unit is factory programmed with a unique 8-digit serial number. This serial number is key to operation of the Thorlabs Server software and is used by the Server to enumerate and communicate independently with multiple hardware units connected on the same USB bus.

The serial number must be allocated using the HWSerialNum property, before an ActiveX control can communicate with the hardware unit. This can be done at design time or at run time.

The functions of the Piezo Control can then be used to perform activities such as setting the drive voltage, setting the jog step voltage and setting device control panel parameters. The functions applicable to the CT1P are listed <u>here</u>.

For details on the use of the CT1P unit, refer to the handbook available to download from www.thorlabs.com.

# MGMSG_PZ_REQ_PIDCRITERIA MGMSG_PZ_GET_PIDCRITERIA MGMSG_PZ_SET_PIDCRITERIA

0x0699 0x069A 0x069B

In the main, the CT1P uses general Piezo and Strain Gauge unit functions and these are listed <u>here</u>. The following function is applicable only to the CT1P Piezo Cage Translator.

Function:The unit has two groups of PID settings. During normal moves, the<br/>unit uses a group of PID settings that are generally chosen for a fast<br/>response. When approaching the desired target (set in the Target<br/>Error Window parameter) then the CT1P uses PID settings which<br/>incorporate a different set of values chosen for low noise and<br/>stability. The Target Error Window defines how close to the target<br/>position the device is before switching PID groups.

#### SET:

#### Command structure (20 bytes)

6 byte header followed by 14 byte data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
	header					Data					
9B	06	0A	00	d	S	Cha	Channel Index		lex	Pric	ority

12	13	14	15	16	17	18	19				
	Data										
Targe	TargetErrWin Reserved Reserved Reserved						rved				

## **Data Structure:**

field	description	format
Channel	Byte 1 sets the channel but for the CT1P is always set to 1,	word
	byte 2 sets the criteria as follows:	
	40 – Strain Gauge Near Target	
	41 – Encoder Near Target	
Index	When operating in Closed Loop mode, the proportional, integral and derivative (PID) constants can be used to fine tune the behaviour of the feedback loop to changes in the output voltage or position. While closed loop operation allows more precise control of the output position, feedback loops need to be adjusted to suit the different types of operation. Therefore, the unit has two groups of PID settings. During normal moves, the unit uses the PID settings ID 0 that are generally chosen for a fast response. When approaching the desired target (set in the Target Error Window field) then the CT1P uses the PID settings ID1, which incorporates a different set of values chosen for low noise and stability. The actual PID .values are set using the <u>SET_PPC_PIDCONSTS</u> message, which must be called twice, once for each Index parameter value.	word
Priority	For Future Use.	word

TargetErrorWindow	When the unit is approaching the requested position, the device switches to using the ID1 set of PID parameters. The Target Error Window defines how close to the target position the device gets before switching parameter sets.	word
Reserved		word
Reserved		word
Reserved		word

# MGMSG_KPC_SET_KCUBETRIGIOCONFIG MGMSG_KPC_REQ_KCUBETRIGIOCONFIG MGMSG_KPC_GET_KCUBETRIGIOCONFIG

# 0x07FC 0x07FD 0x07FE

Function: This message is used to configure the I/O connectors on the KPC101 controller. The message contains configuration settings for the two digital I/O ports and the analogue MONITOR output. Note that the EXT IN analogue input is configured using a separate command (MGMSG_KPC_SET_IOSETTINGS).

## SET:

Command structure (38 bytes)

6 byte header followed by 32 bytes data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
	Header					Data						
FC	07	20	00	d  0x80	S	Channe	el ident	Trig 1	Mode	Trig	g 2 Polarity	
12	13	14	15	16	17	18	19	) 2	0 2	21	22	23
	Data											
Trig 2	Mode	Trig 2	Polarity	Stra	ain Gai	uge Lowe	r Limit		Strain (	Gauge l	Jpper Li	mit
24	25	26	27	28	29	30	31	. 3	2 3	33	34	35
	Data											
SmSa	mples	Monit	Ionitor Mode Monitor Freq Monitor Sw Val Reserved Re				Rese	rved				

36	37			
Data				
Reserved				

## Data Structure:

field	description	format
Channel indent	The channel being addressed	word
	I/O connector #1 configuration for trigger	word
	functionality. Values defined are:	
	0 = Disabled, the state of the I/O port has no effect	
	on the piezo controller.	
	1 = General purpose logic input (read through	
	status bits)	
	2 = Input trigger for voltage/position step up (uses	
	IJSVoltStep from KPZMMIPARAMS) for step size	
	3 = Input trigger for voltage/position step down	
	(uses IJSVoltStep from KPZMMIPARAMS)	
	10 = General purpose logic output (set using	

MGMSG_MOD_SET_DIGOUTPUTS).	
11 = Output, set to active level when strain gauge reading < lower limit, defined in this command	
12 = Output, set to active level when strain gauge reading > lower limit	
13 = Output, set to active level when strain gauge reading < upper limit	
14 = Output, set to active level when strain gauge reading > upper limit	
15 = Output, set to active level when strain gauge reading > lower limit and < upper limit	
16 = Output, set to active level when strain gauge reading < lower limit and > upper limit	
Any other value = reserved, unused	
	word
, , ,	
1 = Active HIGH	
2 = Active LOW	
Any other value = reserved, unused	
The same values as for Trigger I/O #1, described	word
	word
	lana
bit signed value of 0 to 32767 mapping to the zero	long
Upper limit for strain gauge trigger thresholds, 16- bit signed value of 0 to 32767 mapping to the zero to maximum position.	long
Average filtering for display, reserved for legacy reasons, unused.	word
Monitor mode options: 0 = software mode, the voltage output on the MONITOR port is defined by the software value in this command 1 = high voltage monitor mode, the voltage on the MONITOR port is proportional to the output voltage, with 0 to +10 V corresponding to the 0 to maximum voltage range. 2 = position monitor mode, the voltage on the MONITOR port is proportional to the position, with	word
	11 = Output, set to active level when strain gauge reading < lower limit, defined in this command

	Note that in accordance with the fact that both the output voltage and position can be slightly negative, the voltage on the MONITOR output can also be slightly negative, typically down to -1 Volt. Any other value = reserved, unused	
Monitor Filter Frequency	Filter frequency for the MONITOR output, in Hz. If required, the MONITOR output can be filtered for increased noise reduction. A value of 0 turns filtering off.	word
Monitor software value	Software value for the MONITOR output when it is configured to software mode. Signed integer value of -3276 to 32767 corresponding to -1 V to +10 V.	
Reserved	Reserved, unused	word [3]

## Example:

Rx: FC 07 20 00 D0 01 01 00 02 00 01 00 0C 00 01 00 00 20 00 00 00 40 00 00 64 00 01 00 14 00 32 73 00 00 00 00 00 00

Header: FC, 07, 20, 00, D0, 01 --> message ident 07FC followed by 32-byte data packet Channel ident: 01 00 --> channel 1

Trigger I/O #1 Mode: 02 00 --> decimal 2, input trigger for voltage/position step up. Trigger I/O #1 Polarity: 01 00 --> active high.

Trigger I/O #2 Mode: 0C 00 --> decimal 12, output active when strain gauge reading > lower limit.

Trigger I/O #2 Polarity: 01 00 --> active high.

Strain Gauge Lower Limit: 00 20 00 00 --> decimal 8192, equivalent to 25% of travel range Strain Gauge Upper Limit: 00 40 00 00 -> decimal 16384, equivalent to 50% or travel range Smoothing samples: 64 00 --> decimal 100

Monitor mode: 01 00 --> decimal 1, high voltage monitor mode.

Monitor Filter Frequency: 14 00 --> decimal 20, a 20 Hz cut-off frequency filter will be used. Monitor Software Value: 32 73 --> decimal 29490, equivalent to 9 V. Reserved: 00 00 00 00 00 00 --> unused bytes.

# REQUEST:

Command structure (6 bytes)

0	1	2	3	4	5			
Header								
FD	07	Chan ident	00	d	S			

Channel Ident: reserved and ignored.

Response structure (38 bytes):

6 byte header followed by 32 bytes of data packet, as described for the SET command.

0	1	2	3	4	5	6	7	8	9	10	11	
Header							Data					
FE	07	20	00	d  0x8	30 s	Chanr	Channel ident		Trig 1 Mode		Trig 2 Polarity	
12	13	14	15	16	17	18	19	20	21	22	23	
Data												
Trig 2	Trig 2 Mode Trig 2 Polarity Strain Gau					e Lower Li	Lower Limit Strain Gauge Upper Limit					
24	25	26	27	28	29	30	31	32	33	34	35	
					Da	ata						
SmSa	mples	Monitor		Monitor Freq		Monitor Sw Val		Reserved		Reserved		
		Mc	ode									

36	37				
Data					
Reserved					

# MGMSG_KPC_SET_KCUBEMMIPARAMS MGMSG_KPC_REQ_KCUBEMMIPARAMS MGMSG_KPC_GET_KCUBEMMIPARAMS

## 0x08F0 0x08F1 0x08F2

Function:It configures the operating parameters for the top panel LCD display and<br/>the associated control button and joystick wheel.

## SET:

Command structure (40 bytes)

6 byte header followed by 32 bytes data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11	
Header							Data					
FO	08	22	00	d  0x8	80 s	Chan	Channel ident Joystick Mode		Joystick Gear			
12	13	14	15	16	17	18	19	20	21	22	23	
	Data											
Jstick Volt		Jstick Pos		Dir Sense		Preset	Preset Volt 1		Preset Volt 2		Preset Pos 1	
Step		Ste	ep									

24	25	26	27	28	29	30	31	32	33	34	35
Data											
Preset Pos 2		Displ Bright		Displ Timeout		Displ Dim		Reserved		Reserved	
						Level					

36	37	38	39
Rese	rved	Rese	erved

## Data Structure:

field	description	format
Channel indent	The channel being addressed	word
Joystick mode	This parameter specifies the operating mode of the joystick as follows: 1 = Voltage/Position Adjustment Mode: deflecting the joystick wheel changes the output voltage (in open loop mode) or position (in closed loop mode). The change is proportional to the deflection. The rate of change is set in the Joystick Gear parameter that follows. 2 = Jog Mode: deflecting the joystick wheel initiates a jog move, using the parameters specified by the Joystick Volt Step (in open loop) or Joystick Pos Step (in closed loop) parameter. One jog step per click of the wheel. 3 = Go To Mode: deflecting the joystick wheel starts a move from the current voltage or position to one of the two predefined "teach" voltages (in open loop) or positions (in closed loop). The teach voltages and positions are specified in the Preset Volt 1, Preset Volt 2, Preset Pos 1 and Preset Pos 2	word
[	naramotors	
-----------------------------------------	----------------------------------------------------------------------------------------	------
	parameters.	
loustick Coor	Any other value = reserved, unused The rate of change of voltage/position, when the	
Joystick Gear		
	JSMode parameter is set to Voltage/Position	
	Adjust Mode.	
	1 = Voltage/position adjusts at a high rate, coarse	word
	adjustment mode	
	2 = Voltage/position adjusts at a medium rate	
	3 = Voltage/position adjusts at a low rate, fine	
	adjustement mode	
	Any other value = reserved, unused	
Joystick Voltage	The voltage step size when Joystick mode is set to	
Step	Jog Mode, with 0 to 32767 corresponding to the	word
	current maximum voltage	
Joystick Position	The position step size when Joystick mode is set	
Step	to Jog Mode, with 0 to 32767 corresponding to	word
	the current maximum travel range	
Direction Sense	This parameter specifies the direction of a move	
	initiated by the velocity wheel as follows:	word
	0 = Wheel disabled.	
	1 = Normal: upwards rotation of the wheel results	
	in an increased voltage/position.	
	2 = Reverse: upwards rotation of the wheel results	
	in a decreased voltage/position.	
	Any other value = reserved, unused	
Preset Voltage 1	Preset voltage 1 when operating in Go to Mode,	
	with 0 to 32767 corresponding to the current	word
	maximum voltage	
Preset Voltage 2	Preset voltage 2 when operating in Go to Mode,	
	with 0 to 32767 corresponding to the current	word
	maximum voltage	
Preset Position 1	Preset position 1 when operating in Go to Mode,	
	with 0 to 32767 corresponding to the maximum	word
	travel range	
Preset Position 2	Preset voltage 2 when operating in Go to Mode,	
-	with 0 to 32767 corresponding to the maximum	word
	travel range	- *-
Display Brightness	Brightness level of the LCD display on the top of	
, , , , , , , , , , , , , , , , , , , ,	the unit. The brightness is set as a value from 0	
	(Off) to 100 (brightest). The display can be turned	
	off completely by entering a setting of zero,	word
	however, pressing the MENU button on the top	word
	panel will temporarily illuminate the display at its	
	lowest brightness setting to allow adjustments.	
	When the display returns to its default position	
	display mode, it will turn off again	
Display Timeout	Timeout for the display dimming: the display is	
Display TimeOut	automatically dimmed after the time interval	
	specified in the DispTimeout parameter has	word
	elapsed. Set in minutes in the range 0 (never	word
	dimmed) to 480.	

	The dim level is set in the Display Dim Level parameter below	
Display Dim Level	The dim level, as a value from 0 (Off) to 10 (brightest) but is also limited by the	word
Reserved	DispBrightness parameter Reserved, unused	word [4]

### Example:

Rx: F0 08 22 00 D0 01 01 00 01 00 03 00 66 06 66 06 01 00 CD 0C 99 19 CD 0C 99 19 32 00 00 00 19 00 00 00 00 00 00 00 00 00 00

Header: F0, 08, 22, 00, D0, 01 --> message ident 08F0 followed by 34-byte data packet. Channel ident: 01 00 --> channel 1.

Joystick mode: 01 00 --> Voltage/Position Adjustment Mode.

Joystick Gear: 03 00 --> Voltage/position adjusts at a low rate, fine adjustment mode. Joystick Voltage Step: 66 06 --> decimal 1638, equivalent to 5% of the maximum voltage. Joystick Position Step: 66 06 --> decimal 1638, equivalent to 5% of the maximum travel range.

Direction Sense: 01 00 --> normal

Preset Voltage 1: CD 0C --> decimal 3277, 10% of the current maximum voltage.

Preset Voltage 2: 99 19 --> decimal 6553, 20% of the current maximum voltage.

Preset Position 1: CD 0C --> decimal 3277, 10% of the current maximum travel range.

Preset Position 2: 99 19 --> decimal 6553, 20% of the current maximum travel range.

Display Brightness: 32 00 --> decimal 50 (50%).

Display Timeout: 00 00 --> display is never dimmed.

Display Dim Level: 19 00 --> decimal 25 (25%).

Reserved: 00 00 00 00 00 00 00 00 --> unused bytes.

### **REQUEST:**

Command structure (6 bytes)

0	1	2 3 4		5						
Header										
F1	08	Chan ident	00	d	S					

Channel Ident: reserved and ignored.

### GET:

Response structure (40 bytes):

6 byte header followed by 34 bytes of data packet, as described for the SET command.

0	1	2	3	4	5	6	7	8	9	10	11	
	Header								Data			
F2	08	22	00	d  0x8	0 s	Chan	Channel ident		Channel ident Joystick Mode		e Joys	tick Gea
12	13	14	15	16	17	18	19	20	21	22	23	

					Da	ita					
Jstick Ste		Jstick Pos Step		Dir Sense		Preset Volt 1		Preset Volt 2		Preset Pos 1	
24	25	26	27	28 29		30	31	32	33	34	35
					Da	ita					
Preset	Pos 2	Displ	Bright	Displ Timeout		Displ Dim Level		Reserved		Reserved	

36	37	38	39
Rese	rved	Rese	rved

# MGMSG_KPC_SET_IOSETTINGS MGMSG_KPC_REQ_IOSETTINGS MGMSG_KPC_GET_IOSETTINGS

# 0x08F3 0x08F4 0x08F5

Function: It configures the analogue input and the maximum voltage range for the controller. In the KPC101 controller the analogue input port can be configured to control voltage in open loop mode, position in closed loop mode, or used as a general-purpose analogue input with the voltage present on the input not affecting the operation of the piezo controller using the GMSG_PZ_SET_INPUTVOLTSSRC command. In conjunction with this, the analogue input can be taken from the hub channels (hub channel A or B) or from the EXT IN SMA connector using this command. This command is also used to switch the strain gauge input between measuring position or measuring force.

# SET:

Command structure (20 bytes) 6 byte header followed by 14 bytes data packet as follows:

0	1	2	3	4	5	6	7	8	9	10	11
Header								Da	ita		
F3	08	OE	00	d  0x80	S	Channel ident Voltage Limit Analog Ir				g In Src	

12	13	14	15	16	17	18	19
Filter Freq		Voltage	Range	Rese	rved	Rese	rved

# **Data Structure:**

field	description	format
Channel indent	The channel being addressed	word
Voltage Limit	Maximum output voltage in Volts	word
Analog Input Source	0=Disabled	word
	1 = Hub input A	
	2 = Hub input B	
	3 = EXT IN connector	
	Any other value = reserved, unused	
Filter Frequency	Filter frequency in Hz.	word
	Filtering can be used to reduce noise on the input	
	port at the expense of a slower response.	
	Filtering can be turned off by setting this value to	
	0.	
Voltage Range	Voltage range in Volts (75 or 150)	word
Force Sense	Maximum force corresponding to full scale	word [2]
	reading in units of 10 mN.	

Options	Options for I/O settings:	word [2]
	0 = Strain gauge sensor reads position	
	1 = Strain gauge sensor reads force	
	Any other value = reserved, do not use reading in	
	units of 10 mN.	

## Example:

Rx: F3 08 0E 00 D0 01 01 00 46 00 03 00 14 00 4B 00 08 0B 00 00

Header: F3, 08, 0E, 00, D0, 01 --> message ident 08F3 followed by 14-byte data packet.
Channel ident: 01 00 --> channel 1.
Voltage Limit: 46 00 --> 70 Volt maximum output voltage.
Analog Input Source: 03 00 --> EXT IN connector is used as an analogue input.
Filter Frequency: 14 00 --> decimal 20, corresponding to 20 Hz.
Voltage Range: 4B 00 --> 75 Volt hardware range.
Force Sense: 08 0B --> 3000 decimal, maximum force is 30 N.
Options: 00 00 --> Strain gauge input measures position.

# Notes:

- (a) The Voltage Range parameter must be one of two values for the KPC101 controller: 75 or 150.
- (b) Voltage Limit must be a positive value less than or equal to Voltage Range.

### **REQUEST:**

Command structure (6 bytes)

0	1	2	3	4	5					
Header										
F4	08	Chan	00	d	S					
		ident								

Channel Ident: reserved and ignored.

### GET:

Response structure (20 bytes):

6 byte header followed by 14 bytes of data packet, as described for the SET command.

0	1	2	3	4	5	6	7	8	9	10	11
	Header					Data					
F5	08	OE	00	d  0x80	S	Channel ident Voltage Limit Analog Ir			g In Src		

12	13	14	15	16	17	18	19
Filter Freq Voltage Range		e Range	Reserved		Reserved		

Index	
Messages Applicable to BPC20x Series	2
Messages Applicable to BPC30x Series	3
Messages Applicable to PPC001 and PPC102	4
Messages Applicable to TPZ001 and KPZ101	5
Messages Applicable to KPZ101 Only	5
Messages Applicable to TSG001 and KSG101	7
Messages Applicable to KSG101 Only	7
Messages Applicable to MPZ601	8
Messages Applicable to TDC001 and KDC101	9
Messages Applicable to KDC101 Only	10
Messages Applicable to KVS30	10
Messages Applicable to TSC001 and KSC101	11
Messages Applicable to ISCOOL and ISCOOL	12
Messages Applicable to KSCIOLONY Messages Applicable to TST001, TST101, KST101 and K10CR1	12
Messages Applicable to TST101, nor101, KST101 and K100K1	13
Messages Applicable to 131101 and K31101	13
Messages Applicable to K10CR1 Only	14
Messages Applicable to BSC10x and BSC20x	14
Messages Applicable to LTS150 and LTS300	17
Messages Applicable to MLJ050, MLJ150 and MLJ250	18
Messages Applicable to MFF101 and MFF102	19
Messages Applicable to BBD10x, BBD20x, BBD30x, TBD001 and KBD101	20
Messages Applicable to KBD101 Only	21
Messages Applicable to BBD301, BBD302 and BBD303 Only	23
Messages Applicable to BNT001, MNA601, TNA001 and KNA101	24
Messages Applicable to KNA101 Only	25
Messages Applicable to TLS001 and KLSxxx	26
Messages Applicable Only to KLS635 and KLS1550	26
Messages Applicable to TLD001 and KLD101	26
Messages Applicable Only to KLD101	27
Messages Applicable to TQD001, TPA101 and KPA101	27
Messages Applicable to TPA101 and KPA101 Only	27
Messages Applicable to KPA101 Only	27
Messages Applicable to TTC001	28
Messages Applicable to TIM101 and KIM101	28
Messages Applicable to MPC220 and MPC320	29
Messages Applicable to CT1P	30
Introduction	31
AN INTRODUCTION TO MULTI-AXIS SYNCHRONIZED MOVES	42
Generic System Control Messages	45
Introduction	45
MGMSG_MOD_IDENTIFY 0x0223	46
MGMSG MOD SET CHANENABLESTATE 0x0210	47
MGMSG MOD REQ CHANENABLESTATE 0x0211	47
MGMSG_MOD_GET_CHANENABLESTATE 0x0211	47
MGMSG_HW_DISCONNECT 0x0002	49
MGMSG_HW_EDSCONNECT 0x0002 MGMSG_HW_RESPONSE 0x0080	49
MGMSG_HW_RICHRESPONSE 0x0081	50
MGMSG_HW_KICHKESPONSE 0x0081 MGMSG_HW_START_UPDATEMSGS 0x0011	50
MGMSG_HW_START_OPDATEMSGS 0x0011 MGMSG_HW_STOP_UPDATEMSGS 0x0012	51
	21

MGMSG_HW_REQ_INFO 0x0005	52
MGMSG_HW_GET_INFO 0x0006	52
MGMSG_RACK_REQ_BAYUSED 0x0060	54
MGMSG_RACK_GET_BAYUSED 0x0061	54
MGMSG_HUB_REQ_BAYUSED 0x0065	55
MGMSG_HUB_GET_BAYUSED 0x0066	55
MGMSG_RACK_REQ_STATUSBITS 0x0226	56
MGMSG_RACK_GET_STATUSBITS 0x0227	56
MGMSG_RACK_SET_DIGOUTPUTS 0x0228	57
MGMSG_RACK_REQ_DIGOUTPUTS 0x0229	57
MGMSG_RACK_GET_DIGOUTPUTS 0x0230	57
MGMSG_MOD_SET_DIGOUTPUTS 0x0213	58
MGMSG_MOD_REQ_DIGOUTPUTS 0x0214	58
MGMSG_MOD_GET_DIGOUTPUTS 0x0215	58
MGMSG_HW_SET_KCUBEMMILOCK 0x0250	59
MGMSG_HW_REQ_KCUBEMMILOCK 0x0251	59
MGMSG_HW_GET_KCUBEMMILOCK 0x0252	59
MGMSG_RESTOREFACTORYSETTINGS 0x0686	60
Motor Control Messages	61
Introduction	61
MGMSG HW YES FLASH PROGRAMMING 0x0017	62
MGMSG HW NO FLASH PROGRAMMING 0x0018	62
MGMSG MOT SET POSCOUNTER 0x0410	63
MGMSG MOT REQ POSCOUNTER 0x0411	63
MGMSG MOT GET POSCOUNTER 0x0412	63
MGMSG MOT SET ENCCOUNTER 0x0409	64
MGMSG_MOT_REQ_ENCCOUNTER 0x040A	64
MGMSG MOT GET ENCCOUNTER 0x040B	64
MGMSG MOT SET VELPARAMS 0x0413	66
MGMSG MOT REQ VELPARAMS 0x0414	66
MGMSG MOT GET VELPARAMS 0x0415	66
MGMSG_MOT_SET_JOGPARAMS 0x0416	68
MGMSG_MOT_REQ_JOGPARAMS 0x0417	68
MGMSG_MOT_GET_JOGPARAMS 0x0418	68
MGMSG_MOT_REQ_ADCINPUTS 0x042B	70
MGMSG_MOT_GET_ADCINPUTS 0x042C	70
MGMSG_MOT_SET_POWERPARAMS 0x0426	71
MGMSG_MOT_SET_FOWERFARAMS 0x0420	71
MGMSG_MOT_KEQ_FOWERPARAMS 0x0427 MGMSG_MOT_GET_POWERPARAMS 0x0428	71
MGMSG_MOT_SET_FOWERFARAMS 0x0428 MGMSG_MOT_SET_GENMOVEPARAMS 0x043A	73
MGMSG_MOT_SET_GENMOVEPARAMS 0x043A	73
MGMSG_MOT_GET_GENMOVEPARAMS 0x043C	73
MGMSG_MOT_SET_MOVERELPARAMS 0x0445	74
MGMSG_MOT_REQ_MOVERELPARAMS 0x0446	74
MGMSG_MOT_GET_MOVERELPARAMS 0x0447	74
MGMSG_MOT_SET_MOVEABSPARAMS 0x0450	75
MGMSG_MOT_REQ_MOVEABSPARAMS 0x0451	75
MGMSG_MOT_GET_MOVEABSPARAMS 0x0452	75
MGMSG_MOT_SET_HOMEPARAMS 0x0440	76
MGMSG_MOT_REQ_HOMEPARAMS 0x0441	76
MGMSG_MOT_GET_HOMEPARAMS 0x0442	76

MGMSG_MOT_SET_LIMSWITCHPARAMS 0x0423	78
MGMSG_MOT_REQ_LIMSWITCHPARAMS 0x0424	78
MGMSG_MOT_GET_LIMSWITCHPARAMS 0x0425	78
MGMSG_MOT_MOVE_HOME 0x0443	80
MGMSG_MOT_MOVE_HOMED 0x0444	80
MGMSG_MOT_MOVE_RELATIVE 0x0448	81
MGMSG_MOT_MOVE_COMPLETED 0x0464	83
MGMSG_MOT_MOVE_ABSOLUTE 0x0453	84
MGMSG_MOT_MOVE_JOG 0x046A	86
MGMSG_MOT_MOVE_VELOCITY 0x0457	87
MGMSG_MOT_MOVE_STOP 0x0465	88
MGMSG_MOT_MOVE_STOPPED 0x0466	89
MGMSG_MOT_SET_BOWINDEX 0x04F4	90
MGMSG_MOT_REQ_BOWINDEX 0x04F5	90
MGMSG_MOT_GET_BOWINDEX 0x04F6	90
MGMSG_MOT_SET_DCPIDPARAMS 0x04A0	93
MGMSG_MOT_REQ_DCPIDPARAMS 0x04A1	93
MGMSG_MOT_GET_DCPIDPARAMS 0x04A2	93
MGMSG_MOT_SET_AVMODES 0x04B3	95
MGMSG_MOT_REQ_AVMODES 0x04B4	95
MGMSG_MOT_GET_AVMODES 0x04B5	95
MGMSG_MOT_SET_POTPARAMS 0x04B0	97
MGMSG_MOT_REQ_POTPARAMS 0x04B1	97
MGMSG_MOT_GET_POTPARAMS 0x04B2	97
MGMSG_MOT_SET_BUTTONPARAMS 0x04B6	100
MGMSG_MOT_REQ_BUTTONPARAMS 0x04B7	100
MGMSG_MOT_GET_BUTTONPARAMS 0x04B8	100
MGMSG_MOT_SET_EEPROMPARAMS 0x04B9	102
MGMSG_MOT_SET_POSITIONLOOPPARAMS 0x04D7	103
MGMSG MOT REQ POSITIONLOOPPARAMS 0x04D8	103
MGMSG MOT GET POSITIONLOOPPARAMS 0x04D9	103
MGMSG_MOT_SET_MOTOROUTPUTPARAMS 0x04DA	106
MGMSG_MOT_REQ_MOTOROUTPUTPARAMS 0x04DB	106
MGMSG_MOT_GET_MOTOROUTPUTPARAMS 0x04DC	106
MGMSG_MOT_SET_TRACKSETTLEPARAMS 0x04E0	108
MGMSG MOT REQ TRACKSETTLEPARAMS 0x04E1	108
MGMSG MOT GET TRACKSETTLEPARAMS 0x04E2	108
MGMSG_MOT_SET_PROFILEMODEPARAMS 0x04E3	111
MGMSG_MOT_REQ_PROFILEMODEPARAMS 0x04E4	111
MGMSG MOT GET PROFILEMODEPARAMS 0x04E5	111
MGMSG MOT SET JOYSTICKPARAMS 0x04E6	113
MGMSG MOT REQ JOYSTICKPARAMS 0x04E7	113
MGMSG MOT GET JOYSTICKPARAMS 0x04E8	113
MGMSG MOT SET CURRENTLOOPPARAMS 0x04D4	115
MGMSG_MOT_REQ_CURRENTLOOPPARAMS 0x04D5	115
MGMSG MOT GET CURRENTLOOPPARAMS 0x04D6	115
MGMSG_MOT_SET_SETTLEDCURRENTLOOPPARAMS 0x04E9	118
MGMSG_MOT_REQ_SETTLEDCURRENTLOOPPARAMS 0x04EA	118
MGMSG_MOT_GET_SETTLEDCURRENTLOOPPARAMS 0x04EB	118
MGMSG_MOT_SET_STAGEAXISPARAMS 0x04F0	120
MGMSG_MOT_REQ_STAGEAXISPARAMS 0x04F1	120
	0

MGMSG_MOT_GET_STAGEAXISPARAMS 0x04F2	120
MGMSG_MOT_SET_TSTACTUATORTYPE 0x04FE	122
MGMSG_MOT_GET_STATUSUPDATE 0x0481	123
MGMSG_MOT_REQ_STATUSUPDATE 0x0480	124
MGMSG_MOT_GET_USTATUSUPDATE 0x0491	125
MGMSG_MOT_REQ_USTATUSUPDATE 0x0490	130
MGMSG_MOT_ACK_USTATUSUPDATE 0x0492	130
MGMSG_MOT_REQ_STATUSBITS 0x0429	131
MGMSG_MOT_GET_STATUSBITS 0x042A	131
MGMSG_MOT_SUSPEND_ENDOFMOVEMSGS 0x046B	132
MGMSG_MOT_RESUME_ENDOFMOVEMSGS 0x046C	133
MGMSG_MOT_SET_TRIGGER 0x0500	134
MGMSG_MOT_REQ_TRIGGER 0x0501	134
MGMSG_MOT_GET_TRIGGER 0x0502	134
MGMSG_MOT_SET_KCUBEMMIPARAMS 0x0520	137
MGMSG_MOT_REQ_KCUBEMMIPARAMS 0x0521	137
MGMSG_MOT_GET_KCUBEMMIPARAMS 0x0522	137
MGMSG_MOT_SET_KCUBETRIGIOCONFIG 0x0523	140
MGMSG_MOT_REQ_KCUBETRIGCONFIG 0x0524	140
MGMSG_MOT_GET_KCUBETRIGCONFIG 0x0525	140
MGMSG_MOT_SET_KCUBEPOSTRIGPARAMS 0x0526	144
MGMSG_MOT_REQ_KCUBEPOSTRIGPARAMS 0x0527	144
MGMSG_MOT_GET_KCUBEPOSTRIGPARAMS 0x0528	144
MGMSG_MOT_SET_KCUBEKSTLOOPPARAMS 0x0529	148
MGMSG_MOT_REQ_KCUBEKSTLOOPPARAMS 0x052A	148
MGMSG_MOT_GET_KCUBEKSTLOOPPARAMS 0x052B	148
MGMSG_MOT_SET_MOVESYNCHARRAY 0x0A00	171 174
MGMSG_MOT_SET_MOVESYNCHPARAMS 0x0A03	174
MGMSG_MOT_MOVE_SYNCHSTART 0x0A06	176
MGMSG_MOT_SET_RASTERMOVEPARAMS 0x0A10 MGMSG_MOT_REQ_RASTERMOVEPARAMS 0x0A11	177
MGMSG_MOT_REQ_RASTERMOVEPARAMS 0X0A11 MGMSG_MOT_GET_RASTERMOVEPARAMS 0X0A12	177
	177
MGMSG_MOT_MOVE_RASTER 0x0A13 Filter Flipper Control Messages	180
Introduction	181
MGMSG_MOT_SET_MFF_OPERPARAMS 0x0510	181
MGMSG_MOT_SET_MIT_OPERPARAMS 0x0510	182
MGMSG_MOT_GET_MFF_OPERPARAMS 0x0511	182
Solenoid Control Messages	186
Introduction	186
MGMSG_MOT_SET_SOL_OPERATINGMODE 0x04C0	187
MGMSG_MOT_SET_SOL_OFERATINGMODE 0x04C1	187
MGMSG_MOT_KEQ_SOL_OPERATINGMODE 0x04C2	187
MGMSG_MOT_SET_SOL_CYCLEPARAMS 0x04C3	189
MGMSG_MOT_REQ_SOL_CYCLEPARAMS 0x04C4	189
MGMSG_MOT_GET_SOL_CYCLEPARAMS 0x04C5	189
MGMSG_MOT_SET_SOL_INTERLOCKMODE 0x04C6	191
MGMSG_MOT_REQ_SOL_INTERLOCKMODE 0x04C7	191
MGMSG_MOT_GET_SOL_INTERLOCKMODE 0x04C8	191
MGMSG_MOT_SET_SOL_STATE 0x04CB	193
MGMSG MOT REQ SOL STATE 0x04CC	193

MGMSG_MOT_GET_SOL_STATE 0x04CD	193
Piezo Control Messages	195
Introduction	195
MGMSG PZ SET POSCONTROLMODE 0x0640	1955
MGMSG_PZ_REQ_POSCONTROLMODE 0x0641	1955
MGMSG PZ GET POSCONTROLMODE 0x0642	1955
MGMSG_PZ_SET_OUTPUTVOLTS 0x0643	198
MGMSG_PZ_REQ_OUTPUTVOLTS 0x0644	198
MGMSG_PZ_GET_OUTPUTVOLTS 0x0645	198
MGMSG_PZ_SET_OUTPUTPOS 0x0646	199
MGMSG_PZ_REQ_OUTPUTPOS 0x0647	199
MGMSG_PZ_GET_OUTPUTPOS 0x0648	199
MGMSG_PZ_SET_INPUTVOLTSSRC 0x0652	200
MGMSG PZ REQ INPUTVOLTSSRC 0x0653	200
MGMSG_PZ_GET_INPUTVOLTSSRC 0x0654	200
MGMSG_PZ_SET_PICONSTS 0x0655	202
MGMSG PZ REQ PICONSTS 0x0656	202
MGMSG_PZ_GET_PICONSTS 0x0657	202
MGMSG PZ REQ PZSTATUSBITS 0x065B	203
MGMSG PZ GET PZSTATUSBITS 0x065C	203
MGMSG PZ REQ PZSTATUSUPDATE 0x0660	205
MGMSG_PZ_GET_PZSTATUSUPDATE 0x0661	205
MGMSG_PZ_ACK_PZSTATUSUPDATE 0x0662	205
MGMSG_FZ_ACK_FZSTATOSOFDATE 0x0002 MGMSG_FZ_SET_PPC_PIDCONSTS 0x0690	207
MGMSG_PZ_SET_FFC_FIDEONSTS 0x0090 MGMSG_PZ_REQ_PPC_PIDCONSTS 0x0691	208
	208
MGMSG_PZ_GET_PPC_PIDCONSTS 0x0692	
MGMSG_PZ_SET_PPC_NOTCHPARAMS 0x0693	210
MGMSG_PZ_REQ_PPC_NOTCHPARAMS 0x0694	210
MGMSG_PZ_GET_PPC_NOTCHPARAMS 0x0695	210
MGMSG_PZ_SET_PPC_IOSETTINGS 0x0696	212
MGMSG_PZ_REQ_PPC_IOSETTINGS 0x0697	212
MGMSG_PZ_GET_PPC_IOSETTINGS 0x0698	212
MGMSG_PZ_SET_OUTPUTLUT 0x0700	215
MGMSG_PZ_REQ_OUTPUTLUT 0x0701	215
MGMSG_PZ_GET_OUTPUTLUT 0x0702	215
MGMSG_PZ_SET_OUTPUTLUTPARAMS 0x0703	217
MGMSG_PZ_REQ_OUTPUTLUTPARAMS 0x0704	217
MGMSG_PZ_GET_OUTPUTLUTPARAMS 0x0705	217
MGMSG_PZ_START_LUTOUTPUT 0x0706	221
MGMSG_PZ_STOP_LUTOUTPUT 0x0707	221
MGMSG_PZ_SET_EEPROMPARAMS 0x07D0	222
MGMSG PZ SET TPZ DISPSETTINGS 0x07D1	223
MGMSG_PZ_REQ_TPZ_DISPSETTINGS 0x07D2	223
MGMSG PZ GET TPZ DISPSETTINGS 0x07D3	223
MGMSG_PZ_SET_TPZ_IOSETTINGS 0x07D4	224
MGMSG_PZ_REQ_TPZ_IOSETTINGS 0x07D5	224
MGMSG PZ GET TPZ IOSETTINGS 0x07D6	224
MGMSG_PZ_SET_ZERO 0x0658	226
MGMSG_PZ_REQ_MAXTRAVEL 0x0650	227
MGMSG_FZ_REQ_MAXTRAVEL0x0050	227
MGMSG_FZ_GET_MAXTRAVEE0x0051 MGMSG_FZ_SET_IOSETTINGS 0x0670	228
	220

MGMSG_PZ_REQ_IOSETTINGS 0x0671	228
MGMSG_PZ_GET_IOSETTINGS 0x0672	228
MGMSG_PZ_SET_OUTPUTMAXVOLTS 0x0680	230
MGMSG_PZ_REQ_OUTPUTMAXVOLTS 0x0681	230
MGMSG_PZ_GET_OUTPUTMAXVOLTS 0x0682	230
MGMSG_PZ_SET_TPZ_SLEWRATES 0x0683	232
MGMSG_PZ_REQ_TPZ_SLEWRATES 0x0684	232
MGMSG_PZ_GET_TPZ_SLEWRATES 0x0685	232
MGMSG_PZ_SET_LUTVALUETYPE: 0x0708	234
MGMSG_KPZ_SET_KCUBEMMIPARAMS 0x07F0	235
MGMSG_KPZ_REQ_KCUBEMMIPARAMS 0x07F1	235
MGMSG_KPZ_GET_KCUBEMMIPARAMS 0x07F2	235
MGMSG_KPZ_SET_KCUBETRIGIOCONFIG 0x07F3	237
MGMSG_KPZ_REQ_KCUBETRIGIOCONFIG 0x07F4	237
MGMSG_KPZ_GET_KCUBETRIGIOCONFIG 0x07F5	237
MGMSG_PZ_SET_TSG_IOSETTINGS 0x07DA	240
MGMSG PZ REQ TSG IOSETTINGS 0x07DB	240
MGMSG_PZ_GET_TSG_IOSETTINGS 0x07DC	240
MGMSG_PZ_REQ_TSG_READING 0x07DD	242
MGMSG PZ GET TSG READING 0x07DE	242
MGMSG KSG SET KCUBEMMIPARAMS 0x07F6	243
MGMSG_KSG_REQ_KCUBEMMIPARAMS 0x07F7	243
MGMSG_KSG_GET_KCUBEMMIPARAMS 0x07F8	243
MGMSG KSG SET KCUBETRIGIOCONFIG 0x07F9	245
MGMSG_KSG_REQ_KCUBETRIGIOCONFIG 0x07FA	245
MGMSG_KSG_GET_ KCUBETRIGIOCONFIG 0x07FB	245
NanoTrak Control Messages	248
Introduction	248
MGMSG PZ SET NTMODE 0x0603	249
MGMSG_PZ_REQ_NTMODE 0x0604	250
MGMSG_FZ_REQ_RTMODE 0x0605	250
MGM/SG_FZ_GET_NTMODE 0x0005 MGM/SG_FZ_GET_NTMODE 0x0005	250
MGMSG_FZ_SET_NTRACKTIRESHOLD 0x0600	251
MGMSG_PZ_REQ_NTRACKTIRESHOLD 0x0607 MGMSG_PZ_GET_NTTRACKTHRESHOLD 0x0608	
MGMSG_PZ_GET_NTTRACKTIRESHOLD 0x0608 MGMSG_PZ_SET_NTCIRCHOMEPOS 0x0609	251 252
MGMSG_PZ_REQ_NTCIRCHOMEPOS 0x0610	252
MGMSG_PZ_GET_NTCIRCHOMEPOS 0x0611	252
MGMSG_PZ_MOVE_NTCIRCTOHOMEPOS 0x0612	253
MGMSG_PZ_REQ_NTCIRCCENTREPOS 0x0613	254
MGMSG_PZ_GET_NTCIRCCENTREPOS 0x0614	254
MGMSG_PZ_SET_NTCIRCPARAMS 0x0618	256
MGMSG_PZ_REQ_NTCIRCPARAMS 0x0619	256
MGMSG_PZ_GET_NTCIRCPARAMS 0x0620	256
MGMSG_PZ_SET_NTCIRCDIA 0x061A	259
MGMSG_PZ_SET_NTCIRCDIALUT 0x0621	260
MGMSG_PZ_REQ_NTCIRCDIALUT 0x0622	260
MGMSG_PZ_GET_NTCIRCDIALUT 0x0623	260
MGMSG_PZ_SET_NTPHASECOMPPARAMS 0x0626	262
MGMSG_PZ_REQ_NTPHASECOMPPARAMS 0x0627	262
MGMSG_PZ_GET_NTPHASECOMPPARAMS 0x0628	262
MGMSG_PZ_SET_NTTIARANGEPARAMS 0x0630	264

MGMSG_PZ_REQ_NTTIARANGEPARAMS 0x0631	264
MGMSG_PZ_GET_NTTIARANGEPARAMS 0x0632	264
MGMSG_PZ_SET_NTGAINPARAMS 0x0633	267
MGMSG_PZ_REQ_NTGAINPARAMS 0x0634	267
MGMSG_PZ_GET_NTGAINPARAMS 0x0635	267
MGMSG_PZ_SET_NTTIALPFILTERPARAMS 0x0636	268
MGMSG_PZ_REQ_NTTIALPFILTERPARAMS 0x0637	268
MGMSG_PZ_GET_NTTIALPFILTERPARAMS 0x0638	268
MGMSG_PZ_REQ_NTTIAREADING 0x0639	270
MGMSG_PZ_GET_NTTIAREADING 0x063A	270
MGMSG_PZ_SET_NTFEEDBACKSRC 0x063B	272
MGMSG_PZ_REQ_NTFEEDBACKSRC 0x063C	272
MGMSG_PZ_GET_NTFEEDBACKSRC 0x063D	272
MGMSG_PZ_REQ_NTSTATUSBITS 0x063E	274
MGMSG_PZ_GET_NTSTATUSBITS 0x063F	274
MGMSG_PZ_REQ_NTSTATUSUPDATE 0x0664	276
MGMSG_PZ_GET_NTSTATUSUPDATE 0x0665	276
MGMSG_PZ_ACK_NTSTATUSUPDATE 0x0666	280
MGMSG_KNA_SET_NTTIALPFILTERCOEFFS 0x0687	281
MGMSG_KNA_REQ_NTTIALPFILTERCOEFFS 0x0688	281
MGMSG_KNA_GET_NTTIALPFILTERCOEFFS 0x0689	281
MGMSG_KNA_SET_KCUBEMMIPARAMS 0x068A	283
MGMSG_KNA_REQ_KCUBEMMIPARAMS 0x068B	283
MGMSG_KNA_GET_KCUBEMMIPARAMS 0x068C	283
MGMSG_KNA_SET_KCUBETRIGIOCONFIG 0x068D	285
MGMSG_KNA_REQ_KCUBETRIGIOCONFIG 0x068E	285
MGMSG_KNA_GET_KCUBETRIGIOCONFIG 0x068F	285
MGMSG_KNA_REQ_XYSCAN 0x06A0	288
MGMSG_KNA_GET_XYSCAN 0x06A1	288
MGMSG_KNA_STOP_XYSCAN 0x06A2	288
MGMSG_NT_SET_EEPROMPARAMS 0x07E7	290
MGMSG_NT_SET_TNA_DISPSETTINGS 0x07E8	291
MGMSG_NT_REQ_TNA_DISPSETTINGS 0x07E9	291
MGMSG_NT_GET_TNA_DISPSETTINGS 0x07EA	291
MGMSG_NT_SET_TNAIOSETTINGS 0x07EB	292
MGMSG_NT_REQ_TNAIOSETTINGS 0x07EC	292
MGMSG_NT_GET_TNAIOSETTINGS 0x07ED	292
Laser Control Messages	295
Introduction	295
MGMSG_LA_SET_PARAMS 0x0800	296
MGMSG_LA_REQ_PARAMS 0x0801	296
MGMSG_LA_GET_PARAMS 0x0802	296
MGMSG_LA_SET_EEPROMPARAMS 0x0810	310
MGMSG_LA_ENABLEOUTPUT 0x0811	311
MGMSG_LA_DISABLEOUTPUT 0x0812	311
MGMSG_LD_OPENLOOP 0x0813	312
MGMSG_LD_CLOSEDLOOP 0x0814	312
MGMSG_LD_POTROTATING 0x0815	313
MGMSG_LD_MAXCURRENTADJUST 0x0816	314
MGMSG_LD_SET_MAXCURRENTDIGPOT 0x0817	315
MGMSG_LD_REQ_MAXCURRENTDIGPOTb 0x0818	315

MGMSG_LD_GET_MAXCURRENTDIGPOT 0x0819	315
MGMSG_LD_FINDTIAGAIN 0x081A	316
MGMSG_LD_TIAGAINADJUST 0x081B	317
MGMSG_LA_REQ_STATUSUPDATE 0x0820	318
MGMSG_LA_GET_STATUSUPDATE 0x0821	318
MGMSG LA ACK STATUSUPDATE 0x0822	320
MGMSG_LD_REQ_STATUSUPDATE 0x0825	321
MGMSG LD GET STATUSUPDATE 0x0826	321
MGMSG_LD_ACK_STATUSUPDATE 0x0827	323
MGMSG_LA_SET_KCUBETRIGIOCONFIG 0x082A	324
MGMSG_LA_SET_KCUBETRIGCONFIG 0x082B	324
MGMSG_LA_GET_KCUBETRIGCONFIG 0x082C	324
	324 327
Quad Control Messages	
	327
MGMSG_QUAD_SET_PARAMS 0x0870	328
MGMSG_QUAD_REQ_PARAMS 0x0871	328
MGMSG_QUAD_GET_PARAMS 0x0872	328
MGMSG_QUAD_REQ_STATUSUPDATE 0x0880	351
MGMSG_QUAD_GET_STATUSUPDATE 0x0881	351
MGMSG_QUAD_ACK_STATUSUPDATE 0x0882	352
MGMSG_QUAD_SET_EEPROMPARAMS 0x0875	353
TEC Control Messages	354
Introduction	354
MGMSG_TEC_SET_PARAMS 0x0840	355
MGMSG_TEC_REQ_PARAMS 0x0841	355
MGMSG_TEC_GET_PARAMS 0x0842	355
MGMSG_TEC_SET_EEPROMPARAMS 0x0850	366
MGMSG_TEC_REQ_STATUSUPDATE 0x0860	367
MGMSG_TEC_GET_STATUSUPDATE 0x0861	367
MGMSG_TEC_ACK_STATUSUPDATE 0x0862	368
TIM and KIM Control Messages	370
Introduction	370
MGMSG PZMOT SET PARAMS 0x08C0	371
MGMSG_PZMOT_REQ_PARAMS 0x08C1	371
MGMSG PZMOT GET PARAMS 0x08C2	371
MGMSG PZMOT MOVE ABSOLUTE 0x08D4	41719
MGMSG_PZMOT_MOVE_COMPLETED 0x08D6	41820
MGMSG_PZMOT_MOVE_JOG 0x08D9	419
MGMSG_PZMOT_REQ_STATUSUPDATE 0x08E0	420
MGMSG_PZMOT_GET_STATUSUPDATE 0x08E0	42022
	42022 421
MGMSG_PZMOT_ACK_STATUSUPDATE 0x08E2	
MPC220 and MPC320 Control Messages	42224
	422
MGMSG_POL_SET_PARAMS 0x0530	423
MGMSG_POL_REQ_PARAMS 0x0531	423
MGMSG_POL_GET_PARAMS 0x0532	423
CT1P Control Messages	425
Introduction	425
MGMSG_PZ_REQ_PIDCRITERIA 0x0699	42628
MGMSG_PZ_GET_PIDCRITERIA 0x069A	426
MGMSG_PZ_SET_PIDCRITERIA 0x069B	42628